import copy import math import torch import torch.nn as nn import torch.nn.functional as F import entmax # Adapted from # https://github.com/tensorflow/tensor2tensor/blob/0b156ac533ab53f65f44966381f6e147c7371eee/tensor2tensor/layers/common_attention.py def relative_attention_logits(query, key, relation): # We can't reuse the same logic as tensor2tensor because we don't share relation vectors across the batch. # In this version, relation vectors are shared across heads. # query: [batch, heads, num queries, depth]. # key: [batch, heads, num kvs, depth]. # relation: [batch, num queries, num kvs, depth]. # qk_matmul is [batch, heads, num queries, num kvs] qk_matmul = torch.matmul(query, key.transpose(-2, -1)) # q_t is [batch, num queries, heads, depth] q_t = query.permute(0, 2, 1, 3) # r_t is [batch, num queries, depth, num kvs] r_t = relation.transpose(-2, -1) # [batch, num queries, heads, depth] # * [batch, num queries, depth, num kvs] # = [batch, num queries, heads, num kvs] # For each batch and query, we have a query vector per head. # We take its dot product with the relation vector for each kv. q_tr_t_matmul = torch.matmul(q_t, r_t) # qtr_t_matmul_t is [batch, heads, num queries, num kvs] q_tr_tmatmul_t = q_tr_t_matmul.permute(0, 2, 1, 3) # [batch, heads, num queries, num kvs] return (qk_matmul + q_tr_tmatmul_t) / math.sqrt(query.shape[-1]) # Sharing relation vectors across batch and heads: # query: [batch, heads, num queries, depth]. # key: [batch, heads, num kvs, depth]. # relation: [num queries, num kvs, depth]. # # Then take # key reshaped # [num queries, batch * heads, depth] # relation.transpose(-2, -1) # [num queries, depth, num kvs] # and multiply them together. # # Without sharing relation vectors across heads: # query: [batch, heads, num queries, depth]. # key: [batch, heads, num kvs, depth]. # relation: [batch, heads, num queries, num kvs, depth]. # # Then take # key.unsqueeze(3) # [batch, heads, num queries, 1, depth] # relation.transpose(-2, -1) # [batch, heads, num queries, depth, num kvs] # and multiply them together: # [batch, heads, num queries, 1, depth] # * [batch, heads, num queries, depth, num kvs] # = [batch, heads, num queries, 1, num kvs] # and squeeze # [batch, heads, num queries, num kvs] def relative_attention_values(weight, value, relation): # In this version, relation vectors are shared across heads. # weight: [batch, heads, num queries, num kvs]. # value: [batch, heads, num kvs, depth]. # relation: [batch, num queries, num kvs, depth]. # wv_matmul is [batch, heads, num queries, depth] wv_matmul = torch.matmul(weight, value) # w_t is [batch, num queries, heads, num kvs] w_t = weight.permute(0, 2, 1, 3) # [batch, num queries, heads, num kvs] # * [batch, num queries, num kvs, depth] # = [batch, num queries, heads, depth] w_tr_matmul = torch.matmul(w_t, relation) # w_tr_matmul_t is [batch, heads, num queries, depth] w_tr_matmul_t = w_tr_matmul.permute(0, 2, 1, 3) return wv_matmul + w_tr_matmul_t # Adapted from The Annotated Transformer def clones(module_fn, N): return nn.ModuleList([module_fn() for _ in range(N)]) def attention(query, key, value, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) \ / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn) # return torch.matmul(p_attn, value), scores.squeeze(1).squeeze(1) return torch.matmul(p_attn, value), p_attn def sparse_attention(query, key, value, alpha, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = torch.matmul(query, key.transpose(-2, -1)) \ / math.sqrt(d_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) if alpha == 2: p_attn = entmax.sparsemax(scores, -1) elif alpha == 1.5: p_attn = entmax.entmax15(scores, -1) else: raise NotImplementedError if dropout is not None: p_attn = dropout(p_attn) # return torch.matmul(p_attn, value), scores.squeeze(1).squeeze(1) return torch.matmul(p_attn, value), p_attn # Adapted from The Annotated Transformers class MultiHeadedAttention(nn.Module): def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttention, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(lambda: nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, mask=None): "Implements Figure 2" if mask is not None: # Same mask applied to all h heads. mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. x, self.attn = attention(query, key, value, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) if query.dim() == 3: x = x.squeeze(1) return self.linears[-1](x) # Adapted from The Annotated Transformer def attention_with_relations(query, key, value, relation_k, relation_v, mask=None, dropout=None): "Compute 'Scaled Dot Product Attention'" d_k = query.size(-1) scores = relative_attention_logits(query, key, relation_k) if mask is not None: scores = scores.masked_fill(mask == 0, -1e9) p_attn_orig = F.softmax(scores, dim = -1) if dropout is not None: p_attn = dropout(p_attn_orig) return relative_attention_values(p_attn, value, relation_v), p_attn_orig class PointerWithRelations(nn.Module): def __init__(self, hidden_size, num_relation_kinds, dropout=0.2): super(PointerWithRelations, self).__init__() self.hidden_size = hidden_size self.linears = clones(lambda: nn.Linear(hidden_size, hidden_size), 3) self.attn = None self.dropout = nn.Dropout(p=dropout) self.relation_k_emb = nn.Embedding(num_relation_kinds, self.hidden_size) self.relation_v_emb = nn.Embedding(num_relation_kinds, self.hidden_size) def forward(self, query, key, value, relation, mask=None): relation_k = self.relation_k_emb(relation) relation_v = self.relation_v_emb(relation) if mask is not None: mask = mask.unsqueeze(0) nbatches = query.size(0) query, key, value = \ [l(x).view(nbatches, -1, 1, self.hidden_size).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] _, self.attn = attention_with_relations( query, key, value, relation_k, relation_v, mask=mask, dropout=self.dropout) return self.attn[0,0] # Adapted from The Annotated Transformer class MultiHeadedAttentionWithRelations(nn.Module): def __init__(self, h, d_model, dropout=0.1): "Take in model size and number of heads." super(MultiHeadedAttentionWithRelations, self).__init__() assert d_model % h == 0 # We assume d_v always equals d_k self.d_k = d_model // h self.h = h self.linears = clones(lambda: nn.Linear(d_model, d_model), 4) self.attn = None self.dropout = nn.Dropout(p=dropout) def forward(self, query, key, value, relation_k, relation_v, mask=None): # query shape: [batch, num queries, d_model] # key shape: [batch, num kv, d_model] # value shape: [batch, num kv, d_model] # relations_k shape: [batch, num queries, num kv, (d_model // h)] # relations_v shape: [batch, num queries, num kv, (d_model // h)] # mask shape: [batch, num queries, num kv] if mask is not None: # Same mask applied to all h heads. # mask shape: [batch, 1, num queries, num kv] mask = mask.unsqueeze(1) nbatches = query.size(0) # 1) Do all the linear projections in batch from d_model => h x d_k query, key, value = \ [l(x).view(nbatches, -1, self.h, self.d_k).transpose(1, 2) for l, x in zip(self.linears, (query, key, value))] # 2) Apply attention on all the projected vectors in batch. # x shape: [batch, heads, num queries, depth] x, self.attn = attention_with_relations( query, key, value, relation_k, relation_v, mask=mask, dropout=self.dropout) # 3) "Concat" using a view and apply a final linear. x = x.transpose(1, 2).contiguous() \ .view(nbatches, -1, self.h * self.d_k) return self.linears[-1](x) # Adapted from The Annotated Transformer class Encoder(nn.Module): "Core encoder is a stack of N layers" def __init__(self, layer, layer_size, N, tie_layers=False): super(Encoder, self).__init__() if tie_layers: self.layer = layer() self.layers = [self.layer for _ in range(N)] else: self.layers = clones(layer, N) self.norm = nn.LayerNorm(layer_size) # TODO initialize using xavier def forward(self, x, relation, mask): "Pass the input (and mask) through each layer in turn." for layer in self.layers: x = layer(x, relation, mask) return self.norm(x) # Adapted from The Annotated Transformer class SublayerConnection(nn.Module): """ A residual connection followed by a layer norm. Note for code simplicity the norm is first as opposed to last. """ def __init__(self, size, dropout): super(SublayerConnection, self).__init__() self.norm = nn.LayerNorm(size) self.dropout = nn.Dropout(dropout) def forward(self, x, sublayer): "Apply residual connection to any sublayer with the same size." return x + self.dropout(sublayer(self.norm(x))) # Adapted from The Annotated Transformer class EncoderLayer(nn.Module): "Encoder is made up of self-attn and feed forward (defined below)" def __init__(self, size, self_attn, feed_forward, num_relation_kinds, dropout): super(EncoderLayer, self).__init__() self.self_attn = self_attn self.feed_forward = feed_forward self.sublayer = clones(lambda: SublayerConnection(size, dropout), 2) self.size = size self.relation_k_emb = nn.Embedding(num_relation_kinds, self.self_attn.d_k) self.relation_v_emb = nn.Embedding(num_relation_kinds, self.self_attn.d_k) def forward(self, x, relation, mask): "Follow Figure 1 (left) for connections." relation_k = self.relation_k_emb(relation) relation_v = self.relation_v_emb(relation) x = self.sublayer[0](x, lambda x: self.self_attn(x, x, x, relation_k, relation_v, mask)) return self.sublayer[1](x, self.feed_forward) # Adapted from The Annotated Transformer class PositionwiseFeedForward(nn.Module): "Implements FFN equation." def __init__(self, d_model, d_ff, dropout=0.1): super(PositionwiseFeedForward, self).__init__() self.w_1 = nn.Linear(d_model, d_ff) self.w_2 = nn.Linear(d_ff, d_model) self.dropout = nn.Dropout(dropout) def forward(self, x): return self.w_2(self.dropout(F.relu(self.w_1(x))))