File size: 6,115 Bytes
493f80f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
import ast
import json
import regex as re
from collections.abc import Sequence
from typing import List, Any

from transformers import PreTrainedTokenizerBase
from vllm.entrypoints.openai.protocol import (
    ChatCompletionRequest,
    ChatCompletionToolsParam,
    DeltaFunctionCall,
    DeltaMessage,
    DeltaToolCall,
    ExtractedToolCallInformation,
    FunctionCall,
    ToolCall,
)
from vllm.entrypoints.openai.tool_parsers.abstract_tool_parser import (
    ToolParser,
    ToolParserManager,
)

from vllm.logger import init_logger

logger = init_logger(__name__)


def _is_string_type(

    tool_name: str, arg_name: str, tools: List[ChatCompletionToolsParam] | None

):
    if tools is None:
        return False
    for tool in tools:
        if tool.function.name == tool_name:
            if tool.function.parameters is None:
                return False
            arg_type = (
                tool.function.parameters.get("properties", {})
                .get(arg_name, {})
                .get("type", None)
            )
            return arg_type == "string"
    logger.debug("No tool named '%s'.", tool_name)
    return False


def _deserialize(value: str) -> Any:
    try:
        return json.loads(value)
    except Exception:
        pass

    try:
        return ast.literal_eval(value)
    except Exception:
        pass
    return value


@ToolParserManager.register_module("telechat3")
class TeleChat3ModelToolParser(ToolParser):
    """

    Tool call parser for TeleChat3-36B models.

    Used when --enable-auto-tool-choice --tool-call-parser telechat3

    """

    def __init__(self, tokenizer: PreTrainedTokenizerBase):
        super().__init__(tokenizer)

        # initialize properties used for state when parsing tool calls in
        # streaming mode
        self.current_tool_id: int = -1

        self.tool_start_token = "<tool_call>"
        self.tool_end_token = "</tool_call>"

        self.func_detail_regex = re.compile(
            r"<tool_call>(.*?)(<param_key>.*?)?</tool_call>", re.DOTALL
        )
        self.func_arg_regex = re.compile(
            r"<param_key>(.*?)</param_key>(?:\\n|\s)*<param_value>(.*?)</param_value>",
            re.DOTALL,
        )
        self._buffer = ""

    def extract_tool_calls(self, model_output: str, request: ChatCompletionRequest):

        matched_tool_calls = self.func_detail_regex.findall(model_output)
        logger.debug("model_output: %s", model_output)

        tool_calls = []
        try:
            for match in matched_tool_calls:
                tc_name = match[0].strip()
                arg_dict = {}
                if len(match) > 1:
                    for key, value in self.func_arg_regex.findall(match[1]):
                        arg_key = key.strip()
                        arg_val = value.strip()
                        if not _is_string_type(tc_name, key, request.tools):
                            arg_val = _deserialize(arg_val)
                        logger.debug("arg_key = %s, arg_val = %s", arg_key, arg_val)
                        arg_dict[arg_key] = arg_val
                tool_calls.append(
                    ToolCall(
                        type="function",
                        function=FunctionCall(
                            name=tc_name,
                            arguments=json.dumps(arg_dict, ensure_ascii=False),
                        ),
                    )
                )
        except Exception:
            logger.exception("Failed to extract tool call spec")
            return ExtractedToolCallInformation(
                tools_called=False, tool_calls=[], content=model_output
            )
        else:
            if len(tool_calls) > 0:
                content = model_output[: model_output.find(self.tool_start_token)]
                return ExtractedToolCallInformation(
                    tools_called=True, tool_calls=tool_calls, content=content
                )
            return ExtractedToolCallInformation(
                tools_called=False, tool_calls=[], content=model_output
            )

    def extract_tool_calls_streaming(

        self,

        previous_text: str,

        current_text: str,

        delta_text: str,

        previous_token_ids: Sequence[int],

        current_token_ids: Sequence[int],

        delta_token_ids: Sequence[int],

        request: ChatCompletionRequest,

    ) -> DeltaMessage | None:
        self._buffer += delta_text
        cur_text = self._buffer
        start_idx = cur_text.find(self.tool_start_token)
        if start_idx == -1:
            self._buffer = ""
            return DeltaMessage(content=cur_text)
        logger.debug("cur_text = %s", cur_text)
        end_idx = cur_text.find(self.tool_end_token)
        if end_idx != -1:
            extracted_tool_calls = self.extract_tool_calls(
                cur_text[: end_idx + len(self.tool_end_token)], request
            )
            if len(extracted_tool_calls.tool_calls) == 0:
                logger.warning("Failed to extract any tool calls.")
                return None
            self.current_tool_id += 1
            tool_call = extracted_tool_calls.tool_calls[0]
            delta = DeltaMessage(
                content=extracted_tool_calls.content,
                tool_calls=[
                    DeltaToolCall(
                        index=self.current_tool_id,
                        id=tool_call.id,
                        type=tool_call.type,
                        function=DeltaFunctionCall(
                            name=tool_call.function.name,
                            arguments=tool_call.function.arguments,
                        ),
                    )
                ],
            )
            self._buffer = cur_text[end_idx + len(self.tool_end_token) :]
            return delta
        self._buffer = cur_text[start_idx:]
        return DeltaMessage(content=cur_text[:start_idx])


def register_tool_parser(): ...