import torch import torch._inductor.config as inductor_config import torch._dynamo as dynamo # Enable TensorFloat32 tensor cores for float32 matmul (Ampere+ GPUs) # Provides significant speedup with minimal precision loss torch.set_float32_matmul_precision('high') # Enable TF32 for matrix multiplications and cuDNN operations torch.backends.cuda.matmul.allow_tf32 = True torch.backends.cudnn.allow_tf32 = True # Enable cuDNN autotuner - finds fastest algorithms for your hardware # Best when input sizes are consistent; may slow down first iterations torch.backends.cudnn.benchmark = True # Deterministic operations off for speed (set True if reproducibility needed) torch.backends.cudnn.deterministic = False inductor_config.max_autotune_gemm_backends = "ATEN,CUTLASS,FBGEMM" dynamo.config.capture_scalar_outputs = True torch._dynamo.config.recompile_limit = 64