|
|
import logging |
|
|
import os |
|
|
from typing import Tuple, Union, List |
|
|
|
|
|
import numpy as np |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
from e3nn import o3 |
|
|
from e3nn.nn import BatchNorm |
|
|
from e3nn.o3 import TensorProduct, Linear |
|
|
from torch_scatter import scatter, scatter_mean |
|
|
|
|
|
from models.layers import FCBlock |
|
|
|
|
|
|
|
|
def get_irrep_seq(ns, nv, use_second_order_repr, reduce_pseudoscalars): |
|
|
if use_second_order_repr: |
|
|
irrep_seq = [ |
|
|
f'{ns}x0e', |
|
|
f'{ns}x0e + {nv}x1o + {nv}x2e', |
|
|
f'{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o', |
|
|
f'{ns}x0e + {nv}x1o + {nv}x2e + {nv}x1e + {nv}x2o + {nv if reduce_pseudoscalars else ns}x0o' |
|
|
] |
|
|
else: |
|
|
irrep_seq = [ |
|
|
f'{ns}x0e', |
|
|
f'{ns}x0e + {nv}x1o', |
|
|
f'{ns}x0e + {nv}x1o + {nv}x1e', |
|
|
f'{ns}x0e + {nv}x1o + {nv}x1e + {nv if reduce_pseudoscalars else ns}x0o' |
|
|
] |
|
|
return irrep_seq |
|
|
|
|
|
|
|
|
def irrep_to_size(irrep): |
|
|
irreps = irrep.split(' + ') |
|
|
size = 0 |
|
|
for ir in irreps: |
|
|
m, (l, p) = ir.split('x') |
|
|
size += int(m) * (2 * int(l) + 1) |
|
|
return size |
|
|
|
|
|
|
|
|
class FasterTensorProduct(torch.nn.Module): |
|
|
|
|
|
def __init__(self, in_irreps, sh_irreps, out_irreps, **kwargs): |
|
|
super().__init__() |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assert o3.Irreps(sh_irreps) == o3.Irreps('1x0e+1x1o'), "sh_irreps don't look like 1st order spherical harmonics" |
|
|
self.in_irreps = o3.Irreps(in_irreps) |
|
|
self.out_irreps = o3.Irreps(out_irreps) |
|
|
|
|
|
in_muls = {'0e': 0, '1o': 0, '1e': 0, '0o': 0} |
|
|
out_muls = {'0e': 0, '1o': 0, '1e': 0, '0o': 0} |
|
|
for (m, ir) in self.in_irreps: in_muls[str(ir)] = m |
|
|
for (m, ir) in self.out_irreps: out_muls[str(ir)] = m |
|
|
|
|
|
self.weight_shapes = { |
|
|
'0e': (in_muls['0e'] + in_muls['1o'], out_muls['0e']), |
|
|
'1o': (in_muls['0e'] + in_muls['1o'] + in_muls['1e'], out_muls['1o']), |
|
|
'1e': (in_muls['1o'] + in_muls['1e'] + in_muls['0o'], out_muls['1e']), |
|
|
'0o': (in_muls['1e'] + in_muls['0o'], out_muls['0o']) |
|
|
} |
|
|
self.weight_numel = sum(a * b for (a, b) in self.weight_shapes.values()) |
|
|
|
|
|
def forward(self, in_, sh, weight): |
|
|
in_dict, out_dict = {}, {'0e': [], '1o': [], '1e': [], '0o': []} |
|
|
for (m, ir), sl in zip(self.in_irreps, self.in_irreps.slices()): |
|
|
in_dict[str(ir)] = in_[..., sl] |
|
|
if ir[0] == 1: in_dict[str(ir)] = in_dict[str(ir)].reshape(list(in_dict[str(ir)].shape)[:-1] + [-1, 3]) |
|
|
sh_0e, sh_1o = sh[..., 0], sh[..., 1:] |
|
|
if '0e' in in_dict: |
|
|
out_dict['0e'].append(in_dict['0e'] * sh_0e.unsqueeze(-1)) |
|
|
out_dict['1o'].append(in_dict['0e'].unsqueeze(-1) * sh_1o.unsqueeze(-2)) |
|
|
if '1o' in in_dict: |
|
|
out_dict['0e'].append((in_dict['1o'] * sh_1o.unsqueeze(-2)).sum(-1) / np.sqrt(3)) |
|
|
out_dict['1o'].append(in_dict['1o'] * sh_0e.unsqueeze(-1).unsqueeze(-1)) |
|
|
out_dict['1e'].append(torch.linalg.cross(in_dict['1o'], sh_1o.unsqueeze(-2), dim=-1) / np.sqrt(2)) |
|
|
if '1e' in in_dict: |
|
|
out_dict['1o'].append(torch.linalg.cross(in_dict['1e'], sh_1o.unsqueeze(-2), dim=-1) / np.sqrt(2)) |
|
|
out_dict['1e'].append(in_dict['1e'] * sh_0e.unsqueeze(-1).unsqueeze(-1)) |
|
|
out_dict['0o'].append((in_dict['1e'] * sh_1o.unsqueeze(-2)).sum(-1) / np.sqrt(3)) |
|
|
if '0o' in in_dict: |
|
|
out_dict['1e'].append(in_dict['0o'].unsqueeze(-1) * sh_1o.unsqueeze(-2)) |
|
|
out_dict['0o'].append(in_dict['0o'] * sh_0e.unsqueeze(-1)) |
|
|
|
|
|
weight_dict = {} |
|
|
start = 0 |
|
|
for key in self.weight_shapes: |
|
|
in_, out = self.weight_shapes[key] |
|
|
weight_dict[key] = weight[..., start:start + in_ * out].reshape( |
|
|
list(weight.shape)[:-1] + [in_, out]) / np.sqrt(in_) |
|
|
start += in_ * out |
|
|
|
|
|
if out_dict['0e']: |
|
|
out_dict['0e'] = torch.cat(out_dict['0e'], dim=-1) |
|
|
out_dict['0e'] = torch.matmul(out_dict['0e'].unsqueeze(-2), weight_dict['0e']).squeeze(-2) |
|
|
|
|
|
if out_dict['1o']: |
|
|
out_dict['1o'] = torch.cat(out_dict['1o'], dim=-2) |
|
|
out_dict['1o'] = (out_dict['1o'].unsqueeze(-2) * weight_dict['1o'].unsqueeze(-1)).sum(-3) |
|
|
out_dict['1o'] = out_dict['1o'].reshape(list(out_dict['1o'].shape)[:-2] + [-1]) |
|
|
|
|
|
if out_dict['1e']: |
|
|
out_dict['1e'] = torch.cat(out_dict['1e'], dim=-2) |
|
|
out_dict['1e'] = (out_dict['1e'].unsqueeze(-2) * weight_dict['1e'].unsqueeze(-1)).sum(-3) |
|
|
out_dict['1e'] = out_dict['1e'].reshape(list(out_dict['1e'].shape)[:-2] + [-1]) |
|
|
|
|
|
if out_dict['0o']: |
|
|
out_dict['0o'] = torch.cat(out_dict['0o'], dim=-1) |
|
|
|
|
|
out_dict['0o'] = torch.matmul(out_dict['0o'].unsqueeze(-2), weight_dict['0o']).squeeze(-2) |
|
|
|
|
|
out = [] |
|
|
for _, ir in self.out_irreps: |
|
|
out.append(out_dict[str(ir)]) |
|
|
return torch.cat(out, dim=-1) |
|
|
|
|
|
|
|
|
def tp_scatter_simple(tp, fc_layer, node_attr, edge_index, edge_attr, edge_sh, |
|
|
out_nodes=None, reduce='mean', edge_weight=1.0): |
|
|
""" |
|
|
Perform TensorProduct + scatter operation, aka graph convolution. |
|
|
|
|
|
This function is only for edge_groups == 1. For multiple edge groups, and for larger graphs, |
|
|
use tp_scatter_multigroup instead. |
|
|
""" |
|
|
|
|
|
assert isinstance(edge_attr, torch.Tensor), \ |
|
|
"This function is only for a single edge group, so edge_attr must be a tensor and not a list." |
|
|
|
|
|
_device = node_attr.device |
|
|
_dtype = node_attr.dtype |
|
|
edge_src, edge_dst = edge_index |
|
|
out_irreps = fc_layer(edge_attr).to(_device).to(_dtype) |
|
|
out_irreps.mul_(edge_weight) |
|
|
tp = tp(node_attr[edge_dst], edge_sh, out_irreps) |
|
|
out_nodes = out_nodes or node_attr.shape[0] |
|
|
out = scatter(tp, edge_src, dim=0, dim_size=out_nodes, reduce=reduce) |
|
|
return out |
|
|
|
|
|
|
|
|
def tp_scatter_multigroup(tp: o3.TensorProduct, fc_layer: Union[nn.Module, nn.ModuleList], |
|
|
node_attr: torch.Tensor, edge_index: torch.Tensor, |
|
|
edge_attr_groups: List[torch.Tensor], edge_sh: torch.Tensor, |
|
|
out_nodes=None, reduce='mean', edge_weight=1.0): |
|
|
""" |
|
|
Perform TensorProduct + scatter operation, aka graph convolution. |
|
|
|
|
|
To keep the peak memory usage reasonably low, this function does not concatenate the edge_attr_groups. |
|
|
Rather, we sum the output of the tensor product for each edge group, and then divide by the number of edges |
|
|
|
|
|
Parameters |
|
|
---------- |
|
|
tp: o3.TensorProduct |
|
|
fc_layer: nn.Module, or nn.ModuleList |
|
|
If a list, must be the same length as edge_attr_groups |
|
|
node_attr: torch.Tensor |
|
|
edge_index: torch.Tensor of shape (2, num_edges) |
|
|
Indicates the source and destination nodes of each edge |
|
|
edge_attr_groups: List[torch.Tensor] |
|
|
List of tensors, with shape (X_i, num_edge_attributes). Each tensor is a different group of edge attributes |
|
|
X may be different for each tensor, although sum(X_i) must be equal to edge_index.shape[1] |
|
|
edge_sh: torch.Tensor |
|
|
Spherical harmonics for the edges (see o3.spherical_harmonics) |
|
|
out_nodes: |
|
|
Number of output nodes |
|
|
reduce: str |
|
|
'mean' or 'sum'. Reduce function for scatter. |
|
|
edge_weight : float or torch.Tensor |
|
|
Edge weights. If a tensor, must be the same shape as `edge_index` |
|
|
|
|
|
Returns |
|
|
------- |
|
|
torch.Tensor |
|
|
Result of the graph convolution |
|
|
""" |
|
|
|
|
|
assert isinstance(edge_attr_groups, list), "This function is only for a list of edge groups" |
|
|
assert reduce in {"mean", "sum"}, "Only 'mean' and 'sum' are supported for reduce" |
|
|
|
|
|
|
|
|
|
|
|
_device = node_attr.device |
|
|
_dtype = node_attr.dtype |
|
|
edge_src, edge_dst = edge_index |
|
|
edge_attr_lengths = [_edge_attr.shape[0] for _edge_attr in edge_attr_groups] |
|
|
total_rows = sum(edge_attr_lengths) |
|
|
assert total_rows == edge_index.shape[1], "Sum of edge_attr_groups must be equal to edge_index.shape[1]" |
|
|
num_edge_groups = len(edge_attr_groups) |
|
|
edge_weight_is_indexable = hasattr(edge_weight, '__getitem__') |
|
|
|
|
|
out_nodes = out_nodes or node_attr.shape[0] |
|
|
total_output_dim = sum([x.dim for x in tp.irreps_out]) |
|
|
final_out = torch.zeros((out_nodes, total_output_dim), device=_device, dtype=_dtype) |
|
|
div_factors = torch.zeros(out_nodes, device=_device, dtype=_dtype) |
|
|
|
|
|
cur_start = 0 |
|
|
for ii in range(num_edge_groups): |
|
|
cur_length = edge_attr_lengths[ii] |
|
|
cur_end = cur_start + cur_length |
|
|
cur_edge_range = slice(cur_start, cur_end) |
|
|
cur_edge_src, cur_edge_dst = edge_src[cur_edge_range], edge_dst[cur_edge_range] |
|
|
|
|
|
cur_fc = fc_layer[ii] if isinstance(fc_layer, nn.ModuleList) else fc_layer |
|
|
cur_out_irreps = cur_fc(edge_attr_groups[ii]) |
|
|
if edge_weight_is_indexable: |
|
|
cur_out_irreps.mul_(edge_weight[cur_edge_range]) |
|
|
else: |
|
|
cur_out_irreps.mul_(edge_weight) |
|
|
|
|
|
summand = tp(node_attr[cur_edge_dst, :], edge_sh[cur_edge_range, :], cur_out_irreps) |
|
|
|
|
|
|
|
|
final_out += scatter(summand, cur_edge_src, dim=0, dim_size=out_nodes, reduce="sum") |
|
|
div_factors += torch.bincount(cur_edge_src, minlength=out_nodes) |
|
|
|
|
|
cur_start = cur_end |
|
|
|
|
|
del cur_out_irreps, summand |
|
|
|
|
|
if reduce == 'mean': |
|
|
div_factors = torch.clamp(div_factors, torch.finfo(_dtype).eps) |
|
|
final_out = final_out / div_factors[:, None] |
|
|
|
|
|
return final_out |
|
|
|
|
|
|
|
|
class TensorProductConvLayer(torch.nn.Module): |
|
|
def __init__(self, in_irreps, sh_irreps, out_irreps, n_edge_features, residual=True, batch_norm=True, dropout=0.0, |
|
|
hidden_features=None, faster=False, edge_groups=1, tp_weights_layers=2, activation='relu', depthwise=False): |
|
|
super(TensorProductConvLayer, self).__init__() |
|
|
self.in_irreps = in_irreps |
|
|
self.out_irreps = out_irreps |
|
|
self.sh_irreps = sh_irreps |
|
|
self.residual = residual |
|
|
self.edge_groups = edge_groups |
|
|
self.out_size = irrep_to_size(out_irreps) |
|
|
self.depthwise = depthwise |
|
|
if hidden_features is None: |
|
|
hidden_features = n_edge_features |
|
|
|
|
|
if depthwise: |
|
|
in_irreps = o3.Irreps(in_irreps) |
|
|
sh_irreps = o3.Irreps(sh_irreps) |
|
|
out_irreps = o3.Irreps(out_irreps) |
|
|
|
|
|
irreps_mid = [] |
|
|
instructions = [] |
|
|
for i, (mul, ir_in) in enumerate(in_irreps): |
|
|
for j, (_, ir_edge) in enumerate(sh_irreps): |
|
|
for ir_out in ir_in * ir_edge: |
|
|
if ir_out in out_irreps: |
|
|
k = len(irreps_mid) |
|
|
irreps_mid.append((mul, ir_out)) |
|
|
instructions.append((i, j, k, "uvu", True)) |
|
|
|
|
|
|
|
|
|
|
|
irreps_mid = o3.Irreps(irreps_mid) |
|
|
irreps_mid, p, _ = irreps_mid.sort() |
|
|
|
|
|
|
|
|
instructions = [ |
|
|
(i_in1, i_in2, p[i_out], mode, train) |
|
|
for i_in1, i_in2, i_out, mode, train in instructions |
|
|
] |
|
|
|
|
|
self.tp = TensorProduct( |
|
|
in_irreps, |
|
|
sh_irreps, |
|
|
irreps_mid, |
|
|
instructions, |
|
|
shared_weights=False, |
|
|
internal_weights=False, |
|
|
) |
|
|
|
|
|
self.linear_2 = Linear( |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
irreps_in=irreps_mid.simplify(), |
|
|
irreps_out=out_irreps, |
|
|
internal_weights=True, |
|
|
shared_weights=True, |
|
|
) |
|
|
|
|
|
else: |
|
|
if faster: |
|
|
print("Faster Tensor Product") |
|
|
self.tp = FasterTensorProduct(in_irreps, sh_irreps, out_irreps) |
|
|
else: |
|
|
self.tp = o3.FullyConnectedTensorProduct(in_irreps, sh_irreps, out_irreps, shared_weights=False) |
|
|
|
|
|
if edge_groups == 1: |
|
|
self.fc = FCBlock(n_edge_features, hidden_features, self.tp.weight_numel, tp_weights_layers, dropout, activation) |
|
|
else: |
|
|
self.fc = [FCBlock(n_edge_features, hidden_features, self.tp.weight_numel, tp_weights_layers, dropout, activation) for _ in range(edge_groups)] |
|
|
self.fc = nn.ModuleList(self.fc) |
|
|
|
|
|
self.batch_norm = BatchNorm(out_irreps) if batch_norm else None |
|
|
|
|
|
def forward(self, node_attr, edge_index, edge_attr, edge_sh, out_nodes=None, reduce='mean', edge_weight=1.0): |
|
|
if edge_index.shape[1] == 0 and node_attr.shape[0] == 0: |
|
|
raise ValueError("No edges and no nodes") |
|
|
|
|
|
_dtype = node_attr.dtype |
|
|
if edge_index.shape[1] == 0: |
|
|
out = torch.zeros((node_attr.shape[0], self.out_size), dtype=_dtype, device=node_attr.device) |
|
|
else: |
|
|
if self.edge_groups == 1: |
|
|
out = tp_scatter_simple(self.tp, self.fc, node_attr, edge_index, edge_attr, edge_sh, |
|
|
out_nodes, reduce, edge_weight) |
|
|
else: |
|
|
out = tp_scatter_multigroup(self.tp, self.fc, node_attr, edge_index, edge_attr, edge_sh, |
|
|
out_nodes, reduce, edge_weight) |
|
|
|
|
|
if self.depthwise: |
|
|
out = self.linear_2(out) |
|
|
|
|
|
if self.batch_norm: |
|
|
out = self.batch_norm(out) |
|
|
|
|
|
if self.residual: |
|
|
padded = F.pad(node_attr, (0, out.shape[-1] - node_attr.shape[-1])) |
|
|
out = out + padded |
|
|
|
|
|
out = out.to(_dtype) |
|
|
return out |
|
|
|
|
|
|
|
|
class OldTensorProductConvLayer(torch.nn.Module): |
|
|
def __init__(self, in_irreps, sh_irreps, out_irreps, n_edge_features, residual=True, batch_norm=True, dropout=0.0, |
|
|
hidden_features=None): |
|
|
super(OldTensorProductConvLayer, self).__init__() |
|
|
self.in_irreps = in_irreps |
|
|
self.out_irreps = out_irreps |
|
|
self.sh_irreps = sh_irreps |
|
|
self.residual = residual |
|
|
if hidden_features is None: |
|
|
hidden_features = n_edge_features |
|
|
|
|
|
self.tp = tp = o3.FullyConnectedTensorProduct(in_irreps, sh_irreps, out_irreps, shared_weights=False) |
|
|
|
|
|
self.fc = nn.Sequential( |
|
|
nn.Linear(n_edge_features, hidden_features), |
|
|
nn.ReLU(), |
|
|
nn.Dropout(dropout), |
|
|
nn.Linear(hidden_features, tp.weight_numel) |
|
|
) |
|
|
self.batch_norm = BatchNorm(out_irreps) if batch_norm else None |
|
|
|
|
|
def forward(self, node_attr, edge_index, edge_attr, edge_sh, out_nodes=None, reduce='mean', edge_weight=1.0): |
|
|
|
|
|
|
|
|
edge_chunk_size = 100_000 |
|
|
num_edges = edge_attr.shape[0] |
|
|
num_chunks = (num_edges // edge_chunk_size) if num_edges % edge_chunk_size == 0 \ |
|
|
else (num_edges // edge_chunk_size) + 1 |
|
|
edge_ranges = np.array_split(np.arange(num_edges), num_chunks) |
|
|
edge_attr_groups = [edge_attr[cur_range] for cur_range in edge_ranges] |
|
|
|
|
|
out = tp_scatter_multigroup(self.tp, self.fc, node_attr, edge_index, edge_attr_groups, edge_sh, |
|
|
out_nodes, reduce, edge_weight) |
|
|
|
|
|
if self.residual: |
|
|
padded = F.pad(node_attr, (0, out.shape[-1] - node_attr.shape[-1])) |
|
|
out = out + padded |
|
|
|
|
|
if self.batch_norm: |
|
|
out = self.batch_norm(out) |
|
|
|
|
|
out = out.to(node_attr.dtype) |
|
|
return out |
|
|
|