File size: 53,605 Bytes
ce9690f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
import copy
import os
import torch
from datasets.moad import MOAD
from utils.gnina_utils import get_gnina_poses
from utils.molecules_utils import get_symmetry_rmsd
torch.multiprocessing.set_sharing_strategy('file_system')
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
resource.setrlimit(resource.RLIMIT_NOFILE, (64000, rlimit[1]))
import time
from argparse import ArgumentParser, Namespace, FileType
from datetime import datetime
from functools import partial
import numpy as np
import wandb
from rdkit import RDLogger
from torch_geometric.loader import DataLoader
from rdkit.Chem import RemoveAllHs
from datasets.pdbbind import PDBBind
from utils.diffusion_utils import t_to_sigma as t_to_sigma_compl, get_t_schedule
from utils.sampling import randomize_position, sampling
from utils.utils import get_model, ExponentialMovingAverage
from utils.visualise import PDBFile
from tqdm import tqdm
RDLogger.DisableLog('rdApp.*')
import yaml
import pickle
def get_dataset(args, model_args, confidence=False):
if args.dataset != 'moad':
dataset = PDBBind(transform=None, root=args.data_dir, limit_complexes=args.limit_complexes, dataset=args.dataset,
chain_cutoff=args.chain_cutoff,
receptor_radius=model_args.receptor_radius,
cache_path=args.cache_path, split_path=args.split_path,
remove_hs=model_args.remove_hs, max_lig_size=None,
c_alpha_max_neighbors=model_args.c_alpha_max_neighbors,
matching=not model_args.no_torsion, keep_original=True,
popsize=args.matching_popsize,
maxiter=args.matching_maxiter,
all_atoms=model_args.all_atoms if 'all_atoms' in model_args else False,
atom_radius=model_args.atom_radius if 'all_atoms' in model_args else None,
atom_max_neighbors=model_args.atom_max_neighbors if 'all_atoms' in model_args else None,
esm_embeddings_path=args.esm_embeddings_path,
require_ligand=True,
num_workers=args.num_workers,
protein_file=args.protein_file,
ligand_file=args.ligand_file,
knn_only_graph=True if not hasattr(args, 'not_knn_only_graph') else not args.not_knn_only_graph,
include_miscellaneous_atoms=False if not hasattr(args,
'include_miscellaneous_atoms') else args.include_miscellaneous_atoms,
num_conformers=args.samples_per_complex if args.resample_rdkit and not confidence else 1)
else:
dataset = MOAD(transform=None, root=args.data_dir, limit_complexes=args.limit_complexes,
chain_cutoff=args.chain_cutoff,
receptor_radius=model_args.receptor_radius,
cache_path=args.cache_path, split=args.split,
remove_hs=model_args.remove_hs, max_lig_size=None,
c_alpha_max_neighbors=model_args.c_alpha_max_neighbors,
matching=not model_args.no_torsion, keep_original=True,
popsize=args.matching_popsize,
maxiter=args.matching_maxiter,
all_atoms=model_args.all_atoms if 'all_atoms' in model_args else False,
atom_radius=model_args.atom_radius if 'all_atoms' in model_args else None,
atom_max_neighbors=model_args.atom_max_neighbors if 'all_atoms' in model_args else None,
esm_embeddings_path=args.esm_embeddings_path,
esm_embeddings_sequences_path=args.moad_esm_embeddings_sequences_path,
require_ligand=True,
num_workers=args.num_workers,
knn_only_graph=True if not hasattr(args, 'not_knn_only_graph') else not args.not_knn_only_graph,
include_miscellaneous_atoms=False if not hasattr(args,
'include_miscellaneous_atoms') else args.include_miscellaneous_atoms,
num_conformers=args.samples_per_complex if args.resample_rdkit and not confidence else 1,
unroll_clusters=args.unroll_clusters, remove_pdbbind=args.remove_pdbbind,
min_ligand_size=args.min_ligand_size,
max_receptor_size=args.max_receptor_size,
remove_promiscuous_targets=args.remove_promiscuous_targets,
no_randomness=True,
skip_matching=args.skip_matching)
return dataset
if __name__ == '__main__':
cache_name = datetime.now().strftime('date%d-%m_time%H-%M-%S.%f')
parser = ArgumentParser()
parser.add_argument('--config', type=FileType(mode='r'), default=None)
parser.add_argument('--model_dir', type=str, default='workdir/test_score', help='Path to folder with trained score model and hyperparameters')
parser.add_argument('--ckpt', type=str, default='best_ema_inference_epoch_model.pt', help='Checkpoint to use inside the folder')
parser.add_argument('--confidence_model_dir', type=str, default=None, help='Path to folder with trained confidence model and hyperparameters')
parser.add_argument('--confidence_ckpt', type=str, default='best_model_epoch75.pt', help='Checkpoint to use inside the folder')
parser.add_argument('--num_cpu', type=int, default=None, help='if this is a number instead of none, the max number of cpus used by torch will be set to this.')
parser.add_argument('--run_name', type=str, default='test', help='')
parser.add_argument('--project', type=str, default='ligbind_inf', help='')
parser.add_argument('--out_dir', type=str, default=None, help='Where to save results to')
parser.add_argument('--batch_size', type=int, default=40, help='Number of poses to sample in parallel')
parser.add_argument('--old_score_model', action='store_true', default=False, help='')
parser.add_argument('--old_confidence_model', action='store_true', default=True, help='')
parser.add_argument('--matching_popsize', type=int, default=40, help='Differential evolution popsize parameter in matching')
parser.add_argument('--matching_maxiter', type=int, default=40, help='Differential evolution maxiter parameter in matching')
parser.add_argument('--esm_embeddings_path', type=str, default=None, help='If this is set then the LM embeddings at that path will be used for the receptor features')
parser.add_argument('--moad_esm_embeddings_sequences_path', type=str, default=None, help='')
parser.add_argument('--chain_cutoff', type=float, default=None, help='Cutoff of the chains from the ligand') # TODO remove
parser.add_argument('--save_complexes', action='store_true', default=False, help='Save generated complex graphs')
parser.add_argument('--complexes_save_path', type=str, default=None, help='')
parser.add_argument('--dataset', type=str, default='moad', help='')
parser.add_argument('--cache_path', type=str, default='data/cache', help='Folder from where to load/restore cached dataset')
parser.add_argument('--data_dir', type=str, default='../../ligbind/data/BindingMOAD_2020_ab_processed_biounit/', help='Folder containing original structures')
parser.add_argument('--split_path', type=str, default='data/BindingMOAD_2020_ab_processed/splits/val.txt', help='Path of file defining the split')
parser.add_argument('--no_model', action='store_true', default=False, help='Whether to return seed conformer without running model')
parser.add_argument('--no_random', action='store_true', default=False, help='Whether to add randomness in diffusion steps')
parser.add_argument('--no_final_step_noise', action='store_true', default=False, help='Whether to add noise after the final step')
parser.add_argument('--ode', action='store_true', default=False, help='Whether to run the probability flow ODE')
parser.add_argument('--wandb', action='store_true', default=False, help='') # TODO remove
parser.add_argument('--inference_steps', type=int, default=40, help='Number of denoising steps')
parser.add_argument('--limit_complexes', type=int, default=0, help='Limit to the number of complexes')
parser.add_argument('--num_workers', type=int, default=1, help='Number of workers for dataset creation')
parser.add_argument('--tqdm', action='store_true', default=False, help='Whether to show progress bar')
parser.add_argument('--save_visualisation', action='store_true', default=True, help='Whether to save visualizations')
parser.add_argument('--samples_per_complex', type=int, default=4, help='Number of poses to sample for each complex')
parser.add_argument('--resample_rdkit', action='store_true', default=False, help='')
parser.add_argument('--skip_matching', action='store_true', default=False, help='')
parser.add_argument('--sigma_schedule', type=str, default='expbeta', help='Schedule type, no other options')
parser.add_argument('--inf_sched_alpha', type=float, default=1, help='Alpha parameter of beta distribution for t sched')
parser.add_argument('--inf_sched_beta', type=float, default=1, help='Beta parameter of beta distribution for t sched')
parser.add_argument('--pocket_knowledge', action='store_true', default=False, help='')
parser.add_argument('--no_random_pocket', action='store_true', default=False, help='')
parser.add_argument('--pocket_tr_max', type=float, default=3, help='')
parser.add_argument('--pocket_cutoff', type=float, default=5, help='')
parser.add_argument('--actual_steps', type=int, default=None, help='')
parser.add_argument('--restrict_cpu', action='store_true', default=False, help='')
parser.add_argument('--force_fixed_center_conv', action='store_true', default=False, help='')
parser.add_argument('--protein_file', type=str, default='protein_processed', help='')
parser.add_argument('--unroll_clusters', action='store_true', default=True, help='')
parser.add_argument('--ligand_file', type=str, default='ligand', help='')
parser.add_argument('--remove_pdbbind', action='store_true', default=False, help='')
parser.add_argument('--split', type=str, default='val', help='')
parser.add_argument('--limit_failures', type=float, default=5, help='')
parser.add_argument('--min_ligand_size', type=float, default=0, help='')
parser.add_argument('--max_receptor_size', type=float, default=None, help='')
parser.add_argument('--remove_promiscuous_targets', type=float, default=None, help='')
parser.add_argument('--initial_noise_std_proportion', type=float, default=-1.0, help='Initial noise std proportion')
parser.add_argument('--choose_residue', action='store_true', default=False, help='')
parser.add_argument('--temp_sampling_tr', type=float, default=1.0)
parser.add_argument('--temp_psi_tr', type=float, default=0.0)
parser.add_argument('--temp_sigma_data_tr', type=float, default=0.5)
parser.add_argument('--temp_sampling_rot', type=float, default=1.0)
parser.add_argument('--temp_psi_rot', type=float, default=0.0)
parser.add_argument('--temp_sigma_data_rot', type=float, default=0.5)
parser.add_argument('--temp_sampling_tor', type=float, default=1.0)
parser.add_argument('--temp_psi_tor', type=float, default=0.0)
parser.add_argument('--temp_sigma_data_tor', type=float, default=0.5)
parser.add_argument('--gnina_minimize', action='store_true', default=False, help='')
parser.add_argument('--gnina_path', type=str, default='gnina', help='')
parser.add_argument('--gnina_log_file', type=str, default='gnina_log.txt', help='') # To redirect gnina subprocesses stdouts from the terminal window
parser.add_argument('--gnina_full_dock', action='store_true', default=False, help='')
parser.add_argument('--save_gnina_metrics', action='store_true', default=False, help='')
parser.add_argument('--gnina_autobox_add', type=float, default=4.0)
parser.add_argument('--gnina_poses_to_optimize', type=int, default=1)
args = parser.parse_args()
if args.config:
config_dict = yaml.load(args.config, Loader=yaml.FullLoader)
arg_dict = args.__dict__
for key, value in config_dict.items():
if isinstance(value, list):
for v in value:
arg_dict[key].append(v)
else:
arg_dict[key] = value
if args.restrict_cpu:
threads = 16
os.environ["OMP_NUM_THREADS"] = str(threads) # export OMP_NUM_THREADS=4
os.environ["OPENBLAS_NUM_THREADS"] = str(threads) # export OPENBLAS_NUM_THREADS=4
os.environ["MKL_NUM_THREADS"] = str(threads) # export MKL_NUM_THREADS=6
os.environ["VECLIB_MAXIMUM_THREADS"] = str(threads) # export VECLIB_MAXIMUM_THREADS=4
os.environ["NUMEXPR_NUM_THREADS"] = str(threads) # export NUMEXPR_NUM_THREADS=6
os.environ["CUDA_VISIBLE_DEVICES"] = ""
torch.set_num_threads(threads)
if args.out_dir is None: args.out_dir = f'inference_out_dir_not_specified/{args.run_name}'
os.makedirs(args.out_dir, exist_ok=True)
with open(f'{args.model_dir}/model_parameters.yml') as f:
score_model_args = Namespace(**yaml.full_load(f))
if not hasattr(score_model_args, 'separate_noise_schedule'): # exists for compatibility with old runs that did not have the attribute
score_model_args.separate_noise_schedule = False
if not hasattr(score_model_args, 'lm_embeddings_path'):
score_model_args.lm_embeddings_path = None
if not hasattr(score_model_args, 'tr_only_confidence'):
score_model_args.tr_only_confidence = True
if not hasattr(score_model_args, 'high_confidence_threshold'):
score_model_args.high_confidence_threshold = 0.0
if not hasattr(score_model_args, 'include_confidence_prediction'):
score_model_args.include_confidence_prediction = False
if not hasattr(score_model_args, 'confidence_weight'):
score_model_args.confidence_weight = 1
if not hasattr(score_model_args, 'asyncronous_noise_schedule'):
score_model_args.asyncronous_noise_schedule = False
if not hasattr(score_model_args, 'correct_torsion_sigmas'):
score_model_args.correct_torsion_sigmas = False
if not hasattr(score_model_args, 'esm_embeddings_path'):
score_model_args.esm_embeddings_path = None
if args.force_fixed_center_conv:
score_model_args.not_fixed_center_conv = False
if args.confidence_model_dir is not None:
with open(f'{args.confidence_model_dir}/model_parameters.yml') as f:
confidence_args = Namespace(**yaml.full_load(f))
if not os.path.exists(confidence_args.original_model_dir):
print("Path does not exist: ", confidence_args.original_model_dir)
confidence_args.original_model_dir = os.path.join(*confidence_args.original_model_dir.split('/')[-2:])
print('instead trying path: ', confidence_args.original_model_dir)
if not hasattr(confidence_args, 'use_original_model_cache'):
confidence_args.use_original_model_cache = True
if not hasattr(confidence_args, 'esm_embeddings_path'):
confidence_args.esm_embeddings_path = None
if not hasattr(confidence_args, 'num_classification_bins'):
confidence_args.num_classification_bins = 2
if args.num_cpu is not None:
torch.set_num_threads(args.num_cpu)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
test_dataset = get_dataset(args, score_model_args)
test_loader = DataLoader(dataset=test_dataset, batch_size=1, shuffle=False)
if args.confidence_model_dir is not None:
if not (confidence_args.use_original_model_cache or confidence_args.transfer_weights):
# if the confidence model uses the same type of data as the original model then we do not need this dataset and can just use the complexes
print('HAPPENING | confidence model uses different type of graphs than the score model. Loading (or creating if not existing) the data for the confidence model now.')
confidence_test_dataset = get_dataset(args, confidence_args, confidence=True)
confidence_complex_dict = {d.name: d for d in confidence_test_dataset}
t_to_sigma = partial(t_to_sigma_compl, args=score_model_args)
if not args.no_model:
model = get_model(score_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True, old=args.old_score_model)
state_dict = torch.load(f'{args.model_dir}/{args.ckpt}', map_location=torch.device('cpu'))
if args.ckpt == 'last_model.pt':
model_state_dict = state_dict['model']
ema_weights_state = state_dict['ema_weights']
model.load_state_dict(model_state_dict, strict=True)
ema_weights = ExponentialMovingAverage(model.parameters(), decay=score_model_args.ema_rate)
ema_weights.load_state_dict(ema_weights_state, device=device)
ema_weights.copy_to(model.parameters())
else:
model.load_state_dict(state_dict, strict=True)
model = model.to(device)
model.eval()
if args.confidence_model_dir is not None:
if confidence_args.transfer_weights:
with open(f'{confidence_args.original_model_dir}/model_parameters.yml') as f:
confidence_model_args = Namespace(**yaml.full_load(f))
if not hasattr(confidence_model_args, 'separate_noise_schedule'): # exists for compatibility with old runs that did not have the
# attribute
confidence_model_args.separate_noise_schedule = False
if not hasattr(confidence_model_args, 'lm_embeddings_path'):
confidence_model_args.lm_embeddings_path = None
if not hasattr(confidence_model_args, 'tr_only_confidence'):
confidence_model_args.tr_only_confidence = True
if not hasattr(confidence_model_args, 'high_confidence_threshold'):
confidence_model_args.high_confidence_threshold = 0.0
if not hasattr(confidence_model_args, 'include_confidence_prediction'):
confidence_model_args.include_confidence_prediction = False
if not hasattr(confidence_model_args, 'confidence_dropout'):
confidence_model_args.confidence_dropout = confidence_model_args.dropout
if not hasattr(confidence_model_args, 'confidence_no_batchnorm'):
confidence_model_args.confidence_no_batchnorm = False
if not hasattr(confidence_model_args, 'confidence_weight'):
confidence_model_args.confidence_weight = 1
if not hasattr(confidence_model_args, 'asyncronous_noise_schedule'):
confidence_model_args.asyncronous_noise_schedule = False
if not hasattr(confidence_model_args, 'correct_torsion_sigmas'):
confidence_model_args.correct_torsion_sigmas = False
if not hasattr(confidence_model_args, 'esm_embeddings_path'):
confidence_model_args.esm_embeddings_path = None
if not hasattr(confidence_model_args, 'not_fixed_knn_radius_graph'):
confidence_model_args.not_fixed_knn_radius_graph = True
if not hasattr(confidence_model_args, 'not_knn_only_graph'):
confidence_model_args.not_knn_only_graph = True
else:
confidence_model_args = confidence_args
confidence_model = get_model(confidence_model_args, device, t_to_sigma=t_to_sigma, no_parallel=True,
confidence_mode=True, old=args.old_confidence_model)
state_dict = torch.load(f'{args.confidence_model_dir}/{args.confidence_ckpt}', map_location=torch.device('cpu'))
confidence_model.load_state_dict(state_dict, strict=True)
confidence_model = confidence_model.to(device)
confidence_model.eval()
else:
confidence_model = None
confidence_args = None
confidence_model_args = None
if args.wandb:
run = wandb.init(
entity='',
settings=wandb.Settings(start_method="fork"),
project=args.project,
name=args.run_name,
config=args
)
if args.pocket_knowledge and args.different_schedules:
t_max = (np.log(args.pocket_tr_max) - np.log(score_model_args.tr_sigma_min)) / (
np.log(score_model_args.tr_sigma_max) - np.log(score_model_args.tr_sigma_min))
else:
t_max = 1
tr_schedule = get_t_schedule(sigma_schedule=args.sigma_schedule, inference_steps=args.inference_steps,
inf_sched_alpha=args.inf_sched_alpha, inf_sched_beta=args.inf_sched_beta,
t_max=t_max)
t_schedule = None
rot_schedule = tr_schedule
tor_schedule = tr_schedule
print('common t schedule', tr_schedule)
rmsds_list, obrmsds, centroid_distances_list, failures, skipped, min_cross_distances_list, base_min_cross_distances_list, confidences_list, names_list = [], [], [], 0, 0, [], [], [], []
run_times, min_self_distances_list, without_rec_overlap_list = [], [], []
gnina_rmsds_list, gnina_score_list = [], []
N = args.samples_per_complex
#names_no_rec_overlap = read_strings_from_txt(f'data/splits/timesplit_test_no_rec_overlap')
#names_no_rec_overlap = np.load("data/BindingMOAD_2020_processed/test_names_bootstrapping.npy")
names_no_rec_overlap = []
print('Size of test dataset: ', len(test_dataset))
if args.save_complexes:
sampled_complexes = {}
if args.save_gnina_metrics:
# key is complex_name, value is the gnina metrics for all samples
gnina_metrics = {}
for idx, orig_complex_graph in tqdm(enumerate(test_loader)):
torch.cuda.empty_cache()
if confidence_model is not None and not (confidence_args.use_original_model_cache or confidence_args.transfer_weights) \
and orig_complex_graph.name[0] not in confidence_complex_dict.keys():
skipped += 1
print(f"HAPPENING | The confidence dataset did not contain {orig_complex_graph.name[0]}. We are skipping this complex.")
continue
success = 0
bs = args.batch_size
while 0 >= success > -args.limit_failures:
try:
data_list = [copy.deepcopy(orig_complex_graph) for _ in range(N)]
if args.resample_rdkit:
for i, g in enumerate(data_list):
g['ligand'].pos = g['ligand'].pos[i]
randomize_position(data_list, score_model_args.no_torsion, args.no_random or args.no_random_pocket,
score_model_args.tr_sigma_max if not args.pocket_knowledge else args.pocket_tr_max,
args.pocket_knowledge, args.pocket_cutoff,
initial_noise_std_proportion=args.initial_noise_std_proportion,
choose_residue=args.choose_residue)
pdb = None
if args.save_visualisation:
visualization_list = []
for idx, graph in enumerate(data_list):
lig = orig_complex_graph.mol[0]
pdb = PDBFile(lig)
pdb.add(lig, 0, 0)
pdb.add(((orig_complex_graph['ligand'].pos if not args.resample_rdkit else orig_complex_graph['ligand'].pos[idx]) + orig_complex_graph.original_center).detach().cpu(), 1, 0)
pdb.add((graph['ligand'].pos + graph.original_center).detach().cpu(), part=1, order=1)
visualization_list.append(pdb)
else:
visualization_list = None
start_time = time.time()
if not args.no_model:
if confidence_model is not None and not (
confidence_args.use_original_model_cache or confidence_args.transfer_weights):
confidence_data_list = [copy.deepcopy(confidence_complex_dict[orig_complex_graph.name[0]]) for _ in
range(N)]
else:
confidence_data_list = None
data_list, confidence = sampling(data_list=data_list, model=model,
inference_steps=args.actual_steps if args.actual_steps is not None else args.inference_steps,
tr_schedule=tr_schedule, rot_schedule=rot_schedule,
tor_schedule=tor_schedule,
device=device, t_to_sigma=t_to_sigma, model_args=score_model_args,
no_random=args.no_random,
ode=args.ode, visualization_list=visualization_list,
confidence_model=confidence_model,
confidence_data_list=confidence_data_list,
confidence_model_args=confidence_model_args,
t_schedule=t_schedule,
batch_size=bs,
no_final_step_noise=args.no_final_step_noise, pivot=None,
temp_sampling=[args.temp_sampling_tr, args.temp_sampling_rot, args.temp_sampling_tor],
temp_psi=[args.temp_psi_tr, args.temp_psi_rot, args.temp_psi_tor],
temp_sigma_data=[args.temp_sigma_data_tr, args.temp_sigma_data_rot, args.temp_sigma_data_tor])
run_times.append(time.time() - start_time)
if score_model_args.no_torsion:
orig_complex_graph['ligand'].orig_pos = (orig_complex_graph['ligand'].pos.cpu().numpy() + orig_complex_graph.original_center.cpu().numpy())
filterHs = torch.not_equal(data_list[0]['ligand'].x[:, 0], 0).cpu().numpy()
if isinstance(orig_complex_graph['ligand'].orig_pos, list):
# Same pair with multiple binding positions
# print(f'Number of ground truth poses: {len(orig_complex_graph['ligand'].orig_pos)}')
if args.dataset == 'moad' or args.dataset == 'posebusters':
orig_ligand_pos = np.array([pos[filterHs] - orig_complex_graph.original_center.cpu().numpy() for pos in orig_complex_graph['ligand'].orig_pos[0]])
else:
orig_ligand_pos = np.array([pos[filterHs] - orig_complex_graph.original_center.cpu().numpy() for pos in [orig_complex_graph['ligand'].orig_pos[0]]])
print('Found ', len(orig_ligand_pos), ' ground truth poses')
else:
print('default path')
orig_ligand_pos = np.expand_dims(
orig_complex_graph['ligand'].orig_pos[filterHs] - orig_complex_graph.original_center.cpu().numpy(),
axis=0)
ligand_pos = np.asarray(
[complex_graph['ligand'].pos.cpu().numpy()[filterHs] for complex_graph in data_list])
# Use gnina to minimize energy for predicted ligands.
if args.gnina_minimize:
print('Running gnina on all predicted ligand positions for energy minimization.')
gnina_rmsds, gnina_scores = [], []
lig = copy.deepcopy(orig_complex_graph.mol[0])
positions = np.asarray([complex_graph['ligand'].pos.cpu().numpy() for complex_graph in data_list])
conf = confidence
if conf is not None and isinstance(confidence_args.rmsd_classification_cutoff, list):
conf = conf[:, 0]
if conf is not None:
conf = conf.cpu().numpy()
conf = np.nan_to_num(conf, nan=-1e-6)
re_order = np.argsort(conf)[::-1]
positions = positions[re_order]
for pos in positions[:args.gnina_poses_to_optimize]:
center = orig_complex_graph.original_center.cpu().numpy()
gnina_ligand_pos, gnina_mol, gnina_score = get_gnina_poses(args, lig, pos, center, name=orig_complex_graph.name[0],
folder=args.folder, gnina_path=args.gnina_path) # TODO set the right folder
mol = RemoveAllHs(orig_complex_graph.mol[0])
rmsds = []
for i in range(len(orig_ligand_pos)):
try:
rmsd = get_symmetry_rmsd(mol, orig_ligand_pos[i], gnina_ligand_pos, gnina_mol)
except Exception as e:
print("Using non corrected RMSD because of the error:", e)
rmsd = np.sqrt(((gnina_ligand_pos - orig_ligand_pos[i]) ** 2).sum(axis=1).mean(axis=0))
rmsds.append(rmsd)
rmsds = np.asarray(rmsds)
rmsd = np.min(rmsds, axis=0)
gnina_rmsds.append(rmsd)
gnina_scores.append(gnina_score)
gnina_rmsds = np.asarray(gnina_rmsds)
assert gnina_rmsds.shape == (args.gnina_poses_to_optimize,), str(gnina_rmsds.shape) + " " + str(args.gnina_poses_to_optimize)
gnina_rmsds_list.append(gnina_rmsds)
gnina_scores = np.asarray(gnina_scores)
gnina_score_list.append(gnina_scores)
mol = RemoveAllHs(orig_complex_graph.mol[0])
rmsds = []
for i in range(len(orig_ligand_pos)):
try:
rmsd = get_symmetry_rmsd(mol, orig_ligand_pos[i], [l for l in ligand_pos])
except Exception as e:
print("Using non corrected RMSD because of the error:", e)
rmsd = np.sqrt(((ligand_pos - orig_ligand_pos[i]) ** 2).sum(axis=2).mean(axis=1))
rmsds.append(rmsd)
rmsds = np.asarray(rmsds)
rmsd = np.min(rmsds, axis=0)
centroid_distance = np.min(np.linalg.norm(ligand_pos.mean(axis=1)[None, :] - orig_ligand_pos.mean(axis=1)[:, None], axis=2), axis=0)
if confidence is not None and isinstance(confidence_args.rmsd_classification_cutoff, list):
confidence = confidence[:, 0]
if confidence is not None:
confidence = confidence.cpu().numpy()
confidence = np.nan_to_num(confidence, nan=-1e-6)
re_order = np.argsort(confidence)[::-1]
print(orig_complex_graph['name'], ' rmsd', np.around(rmsd, 1)[re_order], ' centroid distance',
np.around(centroid_distance, 1)[re_order], ' confidences ', np.around(confidence, 4)[re_order],
(' gnina rmsd ' + str(np.around(gnina_rmsds, 1))) if args.gnina_minimize else '')
confidences_list.append(confidence)
else:
print(orig_complex_graph['name'], ' rmsd', np.around(rmsd, 1), ' centroid distance',
np.around(centroid_distance, 1))
centroid_distances_list.append(centroid_distance)
self_distances = np.linalg.norm(ligand_pos[:, :, None, :] - ligand_pos[:, None, :, :], axis=-1)
self_distances = np.where(np.eye(self_distances.shape[2]), np.inf, self_distances)
min_self_distances_list.append(np.min(self_distances, axis=(1, 2)))
if args.save_complexes:
sampled_complexes[orig_complex_graph.name[0]] = data_list
if args.save_visualisation:
if confidence is not None:
for rank, batch_idx in enumerate(re_order):
visualization_list[batch_idx].write(
f'{args.out_dir}/{data_list[batch_idx]["name"][0]}_{rank + 1}_{rmsd[batch_idx]:.1f}_{(confidence)[batch_idx]:.1f}.pdb')
else:
for rank, batch_idx in enumerate(np.argsort(rmsd)):
visualization_list[batch_idx].write(
f'{args.out_dir}/{data_list[batch_idx]["name"][0]}_{rank + 1}_{rmsd[batch_idx]:.1f}.pdb')
without_rec_overlap_list.append(1 if orig_complex_graph.name[0] in names_no_rec_overlap else 0)
names_list.append(orig_complex_graph.name[0])
rmsds_list.append(rmsd)
success = 1
except Exception as e:
print("Failed on", orig_complex_graph["name"], e)
success -= 1
if bs > 1:
bs = bs // 2
if success != 1:
rmsds_list.append(np.zeros(args.samples_per_complex) + 10000)
if confidence_model_args is not None:
confidences_list.append(np.zeros(args.samples_per_complex) - 10000)
centroid_distances_list.append(np.zeros(args.samples_per_complex) + 10000)
min_self_distances_list.append(np.zeros(args.samples_per_complex) + 10000)
without_rec_overlap_list.append(1 if orig_complex_graph.name[0] in names_no_rec_overlap else 0)
names_list.append(orig_complex_graph.name[0])
failures += 1
print('Performance without hydrogens included in the loss')
print(failures, "failures due to exceptions")
print(skipped, ' skipped because complex was not in confidence dataset')
if args.save_complexes:
print("Saving complexes.")
if args.complexes_save_path is not None:
with open(os.path.join(args.complexes_save_path, "ligands.pkl"), 'wb') as f:
pickle.dump(sampled_complexes, f)
if args.save_gnina_metrics:
with open(f'{args.out_dir}/gnina_metrics.pkl', 'wb') as f:
pickle.dump(gnina_metrics, f)
print("Saved gnina metrics")
performance_metrics = {}
for overlap in ['', 'no_overlap_']:
if 'no_overlap_' == overlap:
without_rec_overlap = np.array(without_rec_overlap_list, dtype=bool)
if without_rec_overlap.sum() == 0: continue
rmsds = np.array(rmsds_list)[without_rec_overlap]
min_self_distances = np.array(min_self_distances_list)[without_rec_overlap]
centroid_distances = np.array(centroid_distances_list)[without_rec_overlap]
if args.confidence_model_dir is not None:
confidences = np.array(confidences_list)[without_rec_overlap]
else:
confidences = np.array(confidences_list)
names = np.array(names_list)[without_rec_overlap]
gnina_rmsds = np.array(gnina_rmsds_list)[without_rec_overlap] if args.gnina_minimize else None
gnina_score = np.array(gnina_score_list)[without_rec_overlap] if args.gnina_minimize else None
else:
rmsds = np.array(rmsds_list)
gnina_rmsds = np.array(gnina_rmsds_list) if args.gnina_minimize else None
gnina_score = np.array(gnina_score_list) if args.gnina_minimize else None
min_self_distances = np.array(min_self_distances_list)
centroid_distances = np.array(centroid_distances_list)
confidences = np.array(confidences_list)
names = np.array(names_list)
run_times = np.array(run_times)
np.save(f'{args.out_dir}/{overlap}min_self_distances.npy', min_self_distances)
np.save(f'{args.out_dir}/{overlap}rmsds.npy', rmsds)
np.save(f'{args.out_dir}/{overlap}centroid_distances.npy', centroid_distances)
np.save(f'{args.out_dir}/{overlap}confidences.npy', confidences)
np.save(f'{args.out_dir}/{overlap}run_times.npy', run_times)
np.save(f'{args.out_dir}/{overlap}complex_names.npy', np.array(names))
np.save(f'{args.out_dir}/{overlap}gnina_rmsds.npy', gnina_rmsds)
np.save(f'{args.out_dir}/{overlap}gnina_score.npy', gnina_score)
performance_metrics.update({
f'{overlap}run_times_std': run_times.std().__round__(2),
f'{overlap}run_times_mean': run_times.mean().__round__(2),
f'{overlap}mean_rmsd': rmsds.mean(),
f'{overlap}rmsds_below_2': (100 * (rmsds < 2).sum() / len(rmsds) / N),
f'{overlap}rmsds_below_5': (100 * (rmsds < 5).sum() / len(rmsds) / N),
f'{overlap}rmsds_percentile_25': np.percentile(rmsds, 25).round(2),
f'{overlap}rmsds_percentile_50': np.percentile(rmsds, 50).round(2),
f'{overlap}rmsds_percentile_75': np.percentile(rmsds, 75).round(2),
f'{overlap}min_rmsds_below_2': (100 * (np.min(rmsds, axis=1) < 2).sum() / len(rmsds)),
f'{overlap}min_rmsds_below_5': (100 * (np.min(rmsds, axis=1) < 5).sum() / len(rmsds)),
f'{overlap}mean_centroid': centroid_distances.mean().__round__(2),
f'{overlap}centroid_below_2': (100 * (centroid_distances < 2).sum() / len(centroid_distances) / N).__round__(2),
f'{overlap}centroid_below_5': (100 * (centroid_distances < 5).sum() / len(centroid_distances) / N).__round__(2),
f'{overlap}centroid_percentile_25': np.percentile(centroid_distances, 25).round(2),
f'{overlap}centroid_percentile_50': np.percentile(centroid_distances, 50).round(2),
f'{overlap}centroid_percentile_75': np.percentile(centroid_distances, 75).round(2),
})
if args.gnina_minimize:
score_ordering = np.argsort(gnina_score, axis=1)[:, ::-1]
filtered_rmsds_gnina = gnina_rmsds[np.arange(gnina_rmsds.shape[0])[:, None], score_ordering][:, 0]
performance_metrics.update({
f'{overlap}gnina_rmsds_below_2': (100 * (gnina_rmsds < 2).sum() / len(gnina_rmsds) / args.gnina_poses_to_optimize) if args.gnina_minimize else None,
f'{overlap}gnina_rmsds_below_5': (100 * (gnina_rmsds < 5).sum() / len(gnina_rmsds) / args.gnina_poses_to_optimize) if args.gnina_minimize else None,
f'{overlap}gnina_min_rmsds_below_2': (100 * (np.min(gnina_rmsds, axis=1) < 2).sum() / len(gnina_rmsds)) if args.gnina_minimize else None,
f'{overlap}gnina_min_rmsds_below_5': (100 * (np.min(gnina_rmsds, axis=1) < 5).sum() / len(gnina_rmsds)) if args.gnina_minimize else None,
f'{overlap}gnina_filtered_rmsds_below_2': (100 * (filtered_rmsds_gnina < 2).sum() / len(filtered_rmsds_gnina)).__round__(2),
f'{overlap}gnina_filtered_rmsds_below_5': (100 * (filtered_rmsds_gnina < 5).sum() / len(filtered_rmsds_gnina)).__round__(2),
f'{overlap}gnina_rmsds_percentile_25': np.percentile(gnina_rmsds, 25).round(2),
f'{overlap}gnina_rmsds_percentile_50': np.percentile(gnina_rmsds, 50).round(2),
f'{overlap}gnina_rmsds_percentile_75': np.percentile(gnina_rmsds, 75).round(2),
})
if N >= 5:
top5_rmsds = np.min(rmsds[:, :5], axis=1)
top5_centroid_distances = centroid_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][:, 0]
top5_min_self_distances = min_self_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :5], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top5_self_intersect_fraction': (
100 * (top5_min_self_distances < 0.4).sum() / len(top5_min_self_distances)).__round__(2),
f'{overlap}top5_rmsds_below_2': (100 * (top5_rmsds < 2).sum() / len(top5_rmsds)).__round__(2),
f'{overlap}top5_rmsds_below_5': (100 * (top5_rmsds < 5).sum() / len(top5_rmsds)).__round__(2),
f'{overlap}top5_rmsds_percentile_25': np.percentile(top5_rmsds, 25).round(2),
f'{overlap}top5_rmsds_percentile_50': np.percentile(top5_rmsds, 50).round(2),
f'{overlap}top5_rmsds_percentile_75': np.percentile(top5_rmsds, 75).round(2),
f'{overlap}top5_centroid_below_2': (
100 * (top5_centroid_distances < 2).sum() / len(top5_centroid_distances)).__round__(2),
f'{overlap}top5_centroid_below_5': (
100 * (top5_centroid_distances < 5).sum() / len(top5_centroid_distances)).__round__(2),
f'{overlap}top5_centroid_percentile_25': np.percentile(top5_centroid_distances, 25).round(2),
f'{overlap}top5_centroid_percentile_50': np.percentile(top5_centroid_distances, 50).round(2),
f'{overlap}top5_centroid_percentile_75': np.percentile(top5_centroid_distances, 75).round(2),
})
if N >= 10:
top10_rmsds = np.min(rmsds[:, :10], axis=1)
top10_centroid_distances = centroid_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
top10_min_self_distances = min_self_distances[
np.arange(rmsds.shape[0])[:, None], np.argsort(rmsds[:, :10], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top10_self_intersect_fraction': (
100 * (top10_min_self_distances < 0.4).sum() / len(top10_min_self_distances)).__round__(2),
f'{overlap}top10_rmsds_below_2': (100 * (top10_rmsds < 2).sum() / len(top10_rmsds)).__round__(2),
f'{overlap}top10_rmsds_below_5': (100 * (top10_rmsds < 5).sum() / len(top10_rmsds)).__round__(2),
f'{overlap}top10_rmsds_percentile_25': np.percentile(top10_rmsds, 25).round(2),
f'{overlap}top10_rmsds_percentile_50': np.percentile(top10_rmsds, 50).round(2),
f'{overlap}top10_rmsds_percentile_75': np.percentile(top10_rmsds, 75).round(2),
f'{overlap}top10_centroid_below_2': (
100 * (top10_centroid_distances < 2).sum() / len(top10_centroid_distances)).__round__(2),
f'{overlap}top10_centroid_below_5': (
100 * (top10_centroid_distances < 5).sum() / len(top10_centroid_distances)).__round__(2),
f'{overlap}top10_centroid_percentile_25': np.percentile(top10_centroid_distances, 25).round(2),
f'{overlap}top10_centroid_percentile_50': np.percentile(top10_centroid_distances, 50).round(2),
f'{overlap}top10_centroid_percentile_75': np.percentile(top10_centroid_distances, 75).round(2),
})
if confidence_model is not None:
confidence_ordering = np.argsort(confidences, axis=1)[:, ::-1]
filtered_rmsds = rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
filtered_centroid_distances = centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
filtered_min_self_distances = min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, 0]
performance_metrics.update({
f'{overlap}filtered_self_intersect_fraction': (
100 * (filtered_min_self_distances < 0.4).sum() / len(filtered_min_self_distances)).__round__(
2),
f'{overlap}filtered_rmsds_below_2': (100 * (filtered_rmsds < 2).sum() / len(filtered_rmsds)).__round__(2),
f'{overlap}filtered_rmsds_below_5': (100 * (filtered_rmsds < 5).sum() / len(filtered_rmsds)).__round__(2),
f'{overlap}filtered_rmsds_percentile_25': np.percentile(filtered_rmsds, 25).round(2),
f'{overlap}filtered_rmsds_percentile_50': np.percentile(filtered_rmsds, 50).round(2),
f'{overlap}filtered_rmsds_percentile_75': np.percentile(filtered_rmsds, 75).round(2),
f'{overlap}filtered_centroid_below_2': (
100 * (filtered_centroid_distances < 2).sum() / len(filtered_centroid_distances)).__round__(2),
f'{overlap}filtered_centroid_below_5': (
100 * (filtered_centroid_distances < 5).sum() / len(filtered_centroid_distances)).__round__(2),
f'{overlap}filtered_centroid_percentile_25': np.percentile(filtered_centroid_distances, 25).round(2),
f'{overlap}filtered_centroid_percentile_50': np.percentile(filtered_centroid_distances, 50).round(2),
f'{overlap}filtered_centroid_percentile_75': np.percentile(filtered_centroid_distances, 75).round(2),
})
if N >= 5:
top5_filtered_rmsds = np.min(rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)
top5_filtered_centroid_distances = \
centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)][:, 0]
top5_filtered_min_self_distances = \
min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :5], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top5_filtered_rmsds_below_2': (
100 * (top5_filtered_rmsds < 2).sum() / len(top5_filtered_rmsds)).__round__(2),
f'{overlap}top5_filtered_rmsds_below_5': (
100 * (top5_filtered_rmsds < 5).sum() / len(top5_filtered_rmsds)).__round__(2),
f'{overlap}top5_filtered_rmsds_percentile_25': np.percentile(top5_filtered_rmsds, 25).round(2),
f'{overlap}top5_filtered_rmsds_percentile_50': np.percentile(top5_filtered_rmsds, 50).round(2),
f'{overlap}top5_filtered_rmsds_percentile_75': np.percentile(top5_filtered_rmsds, 75).round(2),
f'{overlap}top5_filtered_centroid_below_2': (100 * (top5_filtered_centroid_distances < 2).sum() / len(
top5_filtered_centroid_distances)).__round__(2),
f'{overlap}top5_filtered_centroid_below_5': (100 * (top5_filtered_centroid_distances < 5).sum() / len(
top5_filtered_centroid_distances)).__round__(2),
f'{overlap}top5_filtered_centroid_percentile_25': np.percentile(top5_filtered_centroid_distances,
25).round(2),
f'{overlap}top5_filtered_centroid_percentile_50': np.percentile(top5_filtered_centroid_distances,
50).round(2),
f'{overlap}top5_filtered_centroid_percentile_75': np.percentile(top5_filtered_centroid_distances,
75).round(2),
})
if N >= 10:
top10_filtered_rmsds = np.min(rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10],
axis=1)
top10_filtered_centroid_distances = \
centroid_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10], axis=1)][:, 0]
top10_filtered_min_self_distances = \
min_self_distances[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10][
np.arange(rmsds.shape[0])[:, None], np.argsort(
rmsds[np.arange(rmsds.shape[0])[:, None], confidence_ordering][:, :10], axis=1)][:, 0]
performance_metrics.update({
f'{overlap}top10_filtered_rmsds_below_2': (
100 * (top10_filtered_rmsds < 2).sum() / len(top10_filtered_rmsds)).__round__(2),
f'{overlap}top10_filtered_rmsds_below_5': (
100 * (top10_filtered_rmsds < 5).sum() / len(top10_filtered_rmsds)).__round__(2),
f'{overlap}top10_filtered_rmsds_percentile_25': np.percentile(top10_filtered_rmsds, 25).round(2),
f'{overlap}top10_filtered_rmsds_percentile_50': np.percentile(top10_filtered_rmsds, 50).round(2),
f'{overlap}top10_filtered_rmsds_percentile_75': np.percentile(top10_filtered_rmsds, 75).round(2),
f'{overlap}top10_filtered_centroid_below_2': (100 * (top10_filtered_centroid_distances < 2).sum() / len(
top10_filtered_centroid_distances)).__round__(2),
f'{overlap}top10_filtered_centroid_below_5': (100 * (top10_filtered_centroid_distances < 5).sum() / len(
top10_filtered_centroid_distances)).__round__(2),
f'{overlap}top10_filtered_centroid_percentile_25': np.percentile(top10_filtered_centroid_distances,
25).round(2),
f'{overlap}top10_filtered_centroid_percentile_50': np.percentile(top10_filtered_centroid_distances,
50).round(2),
f'{overlap}top10_filtered_centroid_percentile_75': np.percentile(top10_filtered_centroid_distances,
75).round(2),
})
for k in performance_metrics:
print(k, performance_metrics[k])
if args.wandb:
wandb.log(performance_metrics)
histogram_metrics_list = [('rmsd', rmsds[:, 0]),
('centroid_distance', centroid_distances[:, 0]),
('mean_rmsd', rmsds.mean(axis=1)),
('mean_centroid_distance', centroid_distances.mean(axis=1))]
if N >= 5:
histogram_metrics_list.append(('top5_rmsds', top5_rmsds))
histogram_metrics_list.append(('top5_centroid_distances', top5_centroid_distances))
if N >= 10:
histogram_metrics_list.append(('top10_rmsds', top10_rmsds))
histogram_metrics_list.append(('top10_centroid_distances', top10_centroid_distances))
if confidence_model is not None:
histogram_metrics_list.append(('reverse_filtered_rmsds', reverse_filtered_rmsds))
histogram_metrics_list.append(('reverse_filtered_centroid_distances', reverse_filtered_centroid_distances))
histogram_metrics_list.append(('filtered_rmsd', filtered_rmsds))
histogram_metrics_list.append(('filtered_centroid_distance', filtered_centroid_distances))
if N >= 5:
histogram_metrics_list.append(('top5_filtered_rmsds', top5_filtered_rmsds))
histogram_metrics_list.append(('top5_filtered_centroid_distances', top5_filtered_centroid_distances))
histogram_metrics_list.append(('top5_reverse_filtered_rmsds', top5_reverse_filtered_rmsds))
histogram_metrics_list.append(
('top5_reverse_filtered_centroid_distances', top5_reverse_filtered_centroid_distances))
if N >= 10:
histogram_metrics_list.append(('top10_filtered_rmsds', top10_filtered_rmsds))
histogram_metrics_list.append(('top10_filtered_centroid_distances', top10_filtered_centroid_distances))
histogram_metrics_list.append(('top10_reverse_filtered_rmsds', top10_reverse_filtered_rmsds))
histogram_metrics_list.append(
('top10_reverse_filtered_centroid_distances', top10_reverse_filtered_centroid_distances))
|