BREPNET

Abstract:
BRepNet is a deep learning framework for analysing 3D geometric shapes using boundary representation (BRep) models, with a focus on topological data from the Open CASCADE (OCC) library. It indexes entities such as body, solid, shell, face, edge, co-edge, loop, and vertex using hash values, with a maximum integer value of 2,147,483,647. Data from these indexed entities, along with the OCC and supporting OCCWL libraries, is processed across 9 instances, compressed into .npz files, and used to train the model to learn geometric and topological patterns in 3D shapes.

Objectives:
Data Extracted from Step File Saved in compressed Format in npz file:

· Loading Shape from step file: 
Shape (3D Model) is loaded from the step file and saved in object. The type of the shape is TopoDS_Shape

· Scaling the shape:
 Scaling the input Shape of [-1,1] ^3 which means boundary box side length is 2 units for all sides, center of that box is origin(0,0,0) . So here uniform Scaling is applied. Before Scaling the original boundary, the box shape center is translated to the origin. That’s why the new boundary box center is origin.

· Checking for Closed Bodies: 
These checks—manifold, closed, and unique co-edges—are essential steps to ensure the integrity and validity of the body before performing any further operations. If any of these conditions are violated, the process is halted, and the user is informed of the issue to ensure they can correct it before proceeding.

· Shape entity Indexing: 
Each entity gets indexed with the help of topological walks. We are using hash values. If we pass the entity, it gives random hash value which is ensured to less than 2,147,483,647. For each entity it saves in dictionary structure, the key as hash value and value as index (starting from 0). Here we finally get each entity dictionary with dictionary with indexes. The entities are body, solid, shell, face, edge, co-edge, loop, and vertex.

They are nine instances set of data which saving in the npz file in compressed format

· Face features
· Edge features
· Co-edge features
· Face point grids (UV-Net face convolution concept)
· Co-edge point grids (UV-Net curve convolution)
· Co-edge local coordinate system
· Co-edge reverse flags
· Build incidence arrays
· Extract scale factors

Extract face features from body:

The face features:
·         "Plane",
·         "Cylinder",
        	  "Cone",
·         "SphereFaceFeature",
·         "TorusFaceFeature",
·         "FaceAreaFeature",
·         "RationalNurbsFaceFeature"


[1.   0.   0.   0.   0.   4.   0.]
[Plane, Cylinder, Cone, Sphere, Torus, Area, NURBS]

· For every face it checks the surface type. If the surface type of that features matches it returns 1.0 or 0.0 excluding FaceAreaFeature.
· FaceAreaFeature gives the surface area with scaling applied
· Output shape / face = (1,7)	 7- no of face features
· Output shape including all faces = (num_faces, no of face features)
Sample Output:
[[1.   0.   0.   0.   0.   4.   0.]
[1.   0.   0.   0.   0.   2.56 0.]]

Extract edge features from body:

The edge features are: (Taking edge with two adjacent faces)

        "Concave edge",
        "Convex edge",
        "Smooth",
        "EdgeLengthFeature",
        "CircularEdgeFeature",
        "ClosedEdgeFeature",
        "EllipticalEdgeFeature",
        "StraightEdgeFeature",
        "NonRationalBSplineEdgeFeature",
        "RationalBSplineEdgeFeature"       

[0.  1.  0.  2.  0.  0.  0.  0.  0.  1.]
[Concave, Convex, Smooth, EdgeLengthFeature, CircularEdgeFeature, ClosedEdgeFeature, EllipticalEdgeFeature, StraightEdgeFeature, NonRationalBSplineEdgeFeature, RationalBSplineEdgeFeature]

Convex, concave, and smooth:

They are taking tolerance = 0.0872664626 in radian (5 degree). If the convexity greater than 180+-5 then concave. If less than that is convex. If in that range means smooth. It returns bool.

Remaining Features excluding ClosedEdgeFeature and EdgeLengthFeature are checking with surface type if it matches return 1.0 or 0.0
ClosedEdgeFeature – Check which is closed edge or not (value 1.0 or 0.0)
EdgeLengthFeature – Geometric value giving its length according to scaled value
Output shape / edge = (1, num_edge_features)
Output shape including all edges = (no of edges, num_edge_features)

Sample Output:
[[0.  1.  0.  2.  0.  0.  0.  0.  0.  1.]
 [0.  1.  0.  2.  0.  0.  0.  0.  0.  1.]]

Extract co-edge features from body:

	Co-edge Features:

        "ReversedCoEdgeFeature"

			[0.]
					[ReversedCoedgeFeature]
· The co-edge checks with the orientation checks with paired co-edge face co-edge loop orientation. If its reversed return 1.0 or 0.0
· Shape = (number of co-edges, number of features)
Sample Output:
[[0.]
 [0.]]

Extract face point grids (UV):

· Random uv coordinates from the surface (u=10, v=10). i.e. Each surface applied 10*10 grid.
· From each uv coordinate, they will find global coordinate (gx, gy, gz). And Normal of that point (Nx, Ny, Nz).
· Taking Trimming mask to find that coordinate is masked or not if masked return bool 
· Shape: [No of faces [7 * [[10 * 10]]]]
Getting Data Format (UV):
	
[No of faces [v * [u * [-1.         -1.         -1.         -1.         -1.
   -1.         -1.         -1.         -1.         -1.]]]]
[No of faces [10 * [10 * [x coordinate, y coordinate, z coordinate, Normal(x), Normal(y), Normal(z), Trimming Mask value]]]]


				



Sample Format Output (BRep):

[No of faces * [ [[10 * 10 (x coordinate), 10 * 10 (y coordinate), 10 * 10 (z coordinate), 10 * 10 (Normal(x)), 10 * 10 (Normal(y)), 10 * 10 (Normal(z)),10 * 10 (Trimming Mask value)]]]]
  
Extract Co-edge point grids:

· Random u coordinates from the curve (u=10). i.e. Each curve applied 10 
· From each u coordinate, they will find global coordinate, Normal (Both adjacent faces) of that point and tangents.
· We will get 12 (Total objects or values) magnitude vectors (u = 10)
· Shape: [No of co-edges [[12 * 10]]]

Getting Data Format (UV):
	
[no of co-edges [u * [-1.         -1.         -1.         -1.         -1.         -1.
  -1.         -1.         -1.         -1.]]]
[No of co-edges [10 * [x coordinate, y coordinate, z coordinate, Normal (Left Face) (x), Normal(y) (Left Face), Normal(z) (Left Face), Normal (Right Face)(x), Normal(y) (Right Face), Normal(z) (Right Face),Tangents(x), Tangents(y), Tangents(z)]]]



				





Sample Output (BRep):

[No of co-edges [[10 * x coordinate, 10 * y coordinate, 10 * z coordinate, Normal(Left Face)(10 * x), Normal(10 * y) (Left Face), Normal(10 * z) (Left Face), Normal(10 * x) (Right Face), Normal(10 * y) (Right Face), Normal(10 * z) (Right Face), 10 * Tangents(x), 10 * Tangents(y), 10 * Tangents(z)]]]

Extract co-edge Local Coordinate System:

· Random u coordinates from the curve (u=3). i.e. Each curve applied 3
· Only from Middle point.
· From middle u coordinate, they will find global coordinate, Normal (only Left face) of that point.
· Here from co-edge, they will find homogenous transformation matrixlike. Matrix form = [[R T] [0 1]]
· Shape = [No of co-edges (4,4)]

·         # [[ u_vec.x  v_vec.x  w_vec.x  orig.x]   
·         #  [ u_vec.y  v_vec.y  w_vec.y  orig.y]
·         #  [ u_vec.z  v_vec.z  w_vec.z  orig.z]
        #  [   0         0        0        1  ]]


Sample Output 
[[[ 0.  0. -1. -1.]
 [-1.  0.  0. -1.]
 [ 0.  1.  0.  0.]
 [ 0.  0.  0.  1.]], Num of co-edges]

Extract co-edge reverse flags:

· This is same as Extract co-edge features from body. 
· Only difference - in that features we have 2d but here only considering flags so 1d.
· Shape = [no of co-edges]

Sample Output:
[0. 0. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 0. 0. 0. 0. 1. 1. 1. 1. 1. 1. 1. 1.
 0. 0. 0. 0. 0. 0. 1. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 0. 0. 1. 1. 0. 0. 1.]

Build Incidence Arrays:

· From this for each co-edge they will get next co-edge, mating co-edge, face, and edge indexes 
· Datatype is uint32 (Make sure the index value is not negative)
· Shape for all indexes = [Num of co-edges]
Sample Output:
next = [ 1 2 3 0 5 6 7 4 9 10 11 8 13 14 15 12 17 18 19 16 21 22 23 20 25 26 27 24 29 30 31 28 33 34 35 32 37 38 39 36 41 42 43 40 45 46 47 44] 
mate = [ 6 20 8 12 30 21 0 15 2 23 28 13 3 11 31 7 33 45 41 37 1 5 29 9 35 39 43 47 10 22 4 14 46 16 36 24 34 19 40 25 38 18 44 26 42 17 32 27] 
coedge_to_face = [ 0 0 0 0 1 1 1 1 2 2 2 2 3 3 3 3 3 3 3 3 4 4 4 4 4 4 4 4 5 5 5 5 6 6 6 6 7 7 7 7 8 8 8 8 9 9 9 9]
 coedge_to_edge = [ 0 1 2 3 4 5 0 6 2 7 8 9 3 9 10 6 11 12 13 14 1 5 15 7 16 19 18 17 8 15 4 10 20 11 21 16 21 14 22 19 22 13 23 18 23 12 20 17]


Extract Scale Factors:

· Extract scaling factors by iterating over co-edges on adjacent faces.
· Retrieve global coordinates from face point grids.
· Determine min/max x, y, z values from the coordinates.
· Find the longest side length from the min/max values.
· Given that the boundary side length is always 2, calculate the scale factor and append it to a list.
· Compute the scale factor relative to the main boundary box.
· The shape is represented by the number of co-edges.
Sample Output:
[1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.
 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.]






 







