File size: 14,229 Bytes
b39a019
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
# BETA VERSION - NEEDS FURTHER DEVELOPMENT


# Read these to catch up on what is (trying to at least) being done here
# https://pytorch.org/tutorials/advanced/static_quantization_tutorial.html
# https://pytorch.org/docs/stable/quantization.html#model-preparation-for-eager-mode-static-quantization

# Torch implementation of these models - mine is heavily based on these with some minor adjustments
#
# I've added squeeze and excitation layers to the MobileNetV2, a feature of MobileNetV3, but I did not put in 
# NAS (unnecessary since we're not optimising for mobile) or hardswish (because I prefer ReLU/ think it is better)
# https://github.com/pytorch/vision/blob/main/torchvision/models/mobilenetv3.py#L117
# https://github.com/pytorch/vision/blob/11bf27e37190b320216c349e39b085fb33aefed1/torchvision/models/mobilenetv3.py#L56

# This is an adapted version of MobileNet, somewhere between versions 2/3, as some features of 3 were not required. There are
# also some additions for our particular use case from miscallaneous sources

from torchvision import transforms
import torch
from torch import nn, Tensor
from torch.nn import functional as F
from torch.utils.data import DataLoader, Subset
import ClassUtils

from torch.ao.quantization import QuantStub, DeQuantStub
from torchvision.models.mobilenetv2 import _make_divisible

import time
import random
import os
import matplotlib.pyplot as plt

# Squeeze: summarising global context by pooling feature maps into a single value
# Excitation: Learning attention weights for each channel to prioritise the most relevant ones
class SqueezeExcitation(nn.Module):
    def __init__(self, input_channels:int, squeeze_factor: int = 4):
        super().__init__()
        # If channels are a multiple of 8, they're optimised by the hardware
        squeeze_channels = _make_divisible(input_channels // squeeze_factor, 8)
        self.squeeze = nn.Conv2d(input_channels, squeeze_channels, 1)
        self.relu = nn.ReLU(inplace=True)
        self.unsqueeze = nn.Conv2d(squeeze_channels, input_channels, 1)
        self.quant = nn.quantized.FloatFunctional()
    
    # Scale returns the feature attention map, how much attention should be payed to each input layer, in range [0, 1]
    # Inplace is used to save memory on operations - it might not be necessary in our case since we aren't using edge devices
    def _scale(self, input: Tensor, inplace=bool) -> Tensor:
        # Squeeze
        scale = F.adaptive_avg_pool2d(input, 1)
        scale = self.squeeze(scale)
        # Excite
        scale = self.relu(scale)
        scale = self.unsqueeze(scale)
        return F.hardsigmoid(scale, inplace=inplace)
    
    def forward(self, input: Tensor) -> Tensor:
        # print(self._scale(input, True))
        # print(input)
        return self.quant.mul(self._scale(input, True), input)


# The basic building block of our convolutional neural network
# - qconfig should automatically insert fakeQuantisation operations during training, so there is no need to manually place them now
class ConvBNReLu(nn.Sequential):
    def __init__(self, in_planes, out_planes, kernel_size=3, stride=1, groups=1):
        padding = (kernel_size - 1) // 2
        super().__init__(
            nn.Conv2d(in_planes, out_planes, kernel_size, stride, padding, groups=groups, bias=False),
            # No point applying a bias (constant addative term) if the next layer is a batch normalisation layer
            nn.BatchNorm2d(out_planes, momentum=0.1),
            nn.ReLU(inplace=True)
        )
 

# Like typical residual blocks but uses inverse narrow->wide->narrow, with Depth-wise convolutions instead of normal,
# to reduce the number of parameters required compared to the usual residual blocks
class InvertedResidual(nn.Module):
    def __init__(self, inpt, oupt, stride, expnd_ratio, kernel_size=3, se_layer=None):
        super().__init__()

        self.stride = stride
        assert stride in [1, 2]

        intermediate_channels = int(round(inpt * expnd_ratio))
        # If the stride != 1, downsampling occurs so cannot be true. 
        self.use_residual = (stride==1) and (inpt==oupt)
        # Squeeze and excitation layer - applied after the dw and pw convolutions, but before the residual
        self.se_layer = se_layer if se_layer else None

        layers = []

        if expnd_ratio != 1:
            # Pointwise convolution to increase the channels
            layers.append(ConvBNReLu(inpt, intermediate_channels, kernel_size=1))

        layers.extend([
            # Depthwise convolution - each channel is convoled on an independent basis 
            ConvBNReLu(intermediate_channels, intermediate_channels, stride=stride, groups=intermediate_channels),
            # point-wise convolution - linear combination to reduce layers back to the expected number
            nn.Conv2d(intermediate_channels, oupt, 1, 1, 0, bias=False),
            nn.BatchNorm2d(oupt, momentum=0.25)
        ])
        self.conv = nn.Sequential(*layers)

    def forward(self, x):
        outpt = self.conv(x)
        if self.se_layer is not None:
            outpt = self.se_layer(outpt)

        if self.use_residual:
            return x + outpt
        else:
            return outpt
        

# Same as the inverted residual, but replaces addition with a quantizable friendly operation 
class QuantizableInvertedResidual(InvertedResidual):
    def __init__(self, inpt, outpt, stride, expnd_ratio, se_layer=None):
        super().__init__(inpt, outpt, stride, expnd_ratio, se_layer=se_layer)
        self.skip_add = nn.quantized.FloatFunctional()

    # Overwrites the forwarding to use a quantizable friendly version of the addition
    def forward(self, x):
        outpt = self.conv(x)
        if self.se_layer is not None:
            outpt = self.se_layer(outpt)

        if self.use_residual:
            return self.skip_add.add(x, outpt)
        else:
            return outpt

# The MobileNetV2 Architecture + some features from V3 (squeeze and excitation) but I didn't add NAS since we aren't running this on mobile
# And I prefer ReLU over hardswish
class MobileNetV2_5(nn.Module):
    def __init__(self, class_num=2, width_mult=1.0, round_nearest=8):
        super().__init__()

        layers = []

        input_channel = 32
        last_channel = 1280

        # Just straight up copying this from the torchvision implementation
        self.residual_params =  [
                # expnd_ratio, outpt_channels, num_blocks, stride
                [1, 16, 1, 1],
                [6, 24, 2, 2],
                [6, 32, 3, 2],
                [6, 64, 4, 2],
                [6, 96, 3, 1],
                [6, 160, 3, 2],
                [6, 320, 1, 1],
            ]
        
        first_conv_output_channels = _make_divisible(self.residual_params[0][1] *width_mult, round_nearest)
        layers.append(
            ConvBNReLu(3,
                first_conv_output_channels,
                kernel_size=3,
                stride=2,
                )
        )
        prev_input_channels = first_conv_output_channels

        # Main body of feature extraction
        for expnd, oupt_c, num_blocks, strd in self.residual_params:
            # output channels must be a multiple of 8 for hardware optimisation
            output_channel = _make_divisible(oupt_c * width_mult, round_nearest)
            
            for i in range(num_blocks):
                stride = strd if i == 0 else 1
                se_layer = SqueezeExcitation(oupt_c) if i == 0 else None
                layers.append(QuantizableInvertedResidual(prev_input_channels, output_channel, stride, expnd_ratio=expnd, se_layer=se_layer))
                prev_input_channels = output_channel
            
        
        self.last_channel = _make_divisible(last_channel * max(width_mult, 1.0), round_nearest)

        # We could put this in the classifier, but I want that to be lightweight so that we could do transfer learning only on the head and 
        # the feature extraction part of the model.
        layers.append(
            ConvBNReLu(prev_input_channels, self.last_channel, kernel_size=1)
        )

        self.feature_extraction = nn.Sequential(*layers)
        self.avg_pooling = nn.AdaptiveAvgPool2d(1)
        self.classifier = nn.Sequential(
            nn.Dropout(0.125),
            nn.Linear(last_channel, class_num)
        )

        # This bit is also just straight up copied from torch's implementation - I'm not touching it in case it gets messed up
        # weight initialization
        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.kaiming_normal_(m.weight, mode='fan_out')
                if m.bias is not None:
                    nn.init.zeros_(m.bias)
            elif isinstance(m, nn.BatchNorm2d):
                nn.init.ones_(m.weight)
                nn.init.zeros_(m.bias)
            elif isinstance(m, nn.Linear):
                nn.init.normal_(m.weight, 0, 0.01)
                nn.init.zeros_(m.bias)

    def forward(self, x: Tensor) -> Tensor:
        x = self.feature_extraction(x)
        x = self.avg_pooling(x)
        x = torch.flatten(x, 1)
        print("eyo")
        x = self.classifier(x)

        return x

class QuantizableMobileNetV2_5(MobileNetV2_5):
    def __init__(self, class_num=2, width_mult=1.0, round_nearest=8):
        super().__init__(class_num=class_num, width_mult=width_mult, round_nearest=round_nearest)
        self.quant = QuantStub()
        self.dequant = DeQuantStub()

    def _forward_impl(self, x: Tensor) -> Tensor:
        x = self.feature_extraction(x)

        # This was for debugging errors in shape of feature maps as they pass through - not deleting incase useful later
        # for idx, layer in enumerate(self.feature_extraction):
        #     x = layer(x)
        #     print(f"Feature extraction layer {idx}, output shape: {x.shape}")
    
        x = self.avg_pooling(x)
        x = torch.flatten(x, 1)
        x = self.classifier(x)

        return x

    def forward(self, x: Tensor) -> Tensor:
        x = self.quant(x)
        x = self._forward_impl(x)
        x= self.dequant(x)
        return x


def train_single_epoch(model, loss_fnc, optimiser, data_loader, device):
    model.train()
    running_loss = 0
    running_time = 0.0
    for images, labels in data_loader:
        start_time = time.time()
        print(".", end=" ")
        
        images, labels = images.to(device), labels.to(device)
        preds = model(images)
        loss = loss_fnc(preds, labels)
        loss.backward()
        optimiser.step()

        running_loss += loss.item()
        running_time += time.time() - start_time
        
        print(f"{(time.time() - start_time):.2f}, {(running_time):.2f}", end=" ")

    print(f"loss of {running_loss}")
    return

def print_size_of_model(model):
    torch.save(model.state_dict(), "temp.p")
    print('Size (MB):', os.path.getsize("temp.p")/1e6)
    os.remove('temp.p')

def adjust_quantisation_engine():
    # Adjust according to what your device supports
    print(torch.backends.quantized.supported_engines)
    torch.backends.quantized.engine = 'qnnpack'

def train_model(model, dataloader, loss_function, optimiser, epoch_number=25, const_save=False, save=True):
    for epoch in range(epoch_number):
        print("IT IS EPOCH", epoch)
        train_single_epoch(model, loss_function, optimiser, dataloader, torch.device('cpu'))

        # Gradually freezes the unrequired observer parameters for quantisation and batch normalisation after a few epochs
        if epoch > 3:
            # Freeze quantizer parameters
            model.apply(torch.ao.quantization.disable_observer)
        if epoch > 2:
            # Freeze batch norm mean and variance estimates
            model.apply(torch.nn.intrinsic.qat.freeze_bn_stats)

        if const_save:
            quantized_model = torch.ao.quantization.convert(model.eval(), inplace=False)
            quantized_model.eval()

            # Saving each intermediary model since they're so small, and this lets load up any of them for performace difference examples later
            torch.save(quantized_model.state_dict(), "quantStateDict"+str(epoch+1)+".pth")

            print(f"the above was Epoch {epoch+1} of {epoch_number} \nThe model has a size of", end=" ")
            print_size_of_model(quantized_model)

        else:
            print(f"the above was Epoch {epoch} of {epoch_number}")
    
    if save:
        torch.save(quantized_model.state_dict(), "full_quantStateDict.pth")
                   
    return model


learning_rate = 1e-3
batch_size = 64   
data_size = 2560

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')

# Update to whatever you call your model
modelName = "quantStateDict8.pth"
load = False

model = QuantizableMobileNetV2_5()

# Adjust according to what your device supports
torch.backends.quantized.engine = 'qnnpack'
model.qconfig = torch.ao.quantization.default_qconfig

optimiser = torch.optim.SGD(model.parameters(), lr= learning_rate)
torch.ao.quantization.prepare_qat(model, inplace=True)


dataset = ClassUtils.CrosswalkDataset("zebra_annotations/classification_data")
train_loader = DataLoader(
    Subset(dataset, random.sample(list(range(0, int(len(dataset) * 0.95))), data_size)),
      batch_size=batch_size, shuffle=True)
test_loader = DataLoader(
    Subset(dataset, random.sample(list(range(int(len(dataset) * 0.95), len(dataset))), 256)),
      batch_size=batch_size, shuffle=False)

loss_function = nn.BCEWithLogitsLoss()
model_updated = train_model(model, train_loader, loss_function, optimiser, epoch_number=8, const_save=True)

quantized_model = torch.ao.quantization.convert(model_updated.eval(), inplace=True)

if load:
    model_loaded_state_dict = torch.load(modelName)
    quantized_model.load_state_dict(model_loaded_state_dict)


for images, labels in test_loader:
    preds = torch.sigmoid(quantized_model(images))
    for i in range(len(preds)):
        print(preds)
        # plt.imshow(torch.permute(images[i], (1, 2, 0)).detach().numpy())
        # plt.title(f"Prediction: {preds[i]}, Actual: {labels[i][0] == 1}")
        # plt.axis("off")
        # plt.show()