FBAGSTM commited on
Commit
cdc1d15
·
verified ·
1 Parent(s): 1ab98c1

Release AI-ModelZoo-4.0.0

Browse files
Files changed (1) hide show
  1. README.md +81 -3
README.md CHANGED
@@ -1,3 +1,81 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ ---
4
+ # Yunet
5
+
6
+ ## **Use case** : `Face detection`
7
+
8
+ # Model description
9
+
10
+ Yunet is a lightweight and efficient face detection model optimized for real-time applications on embedded devices. Yunet designed specifically for detecting faces and 5 keypoints (2x eyes, 2x mouth, nose). The models are quantized to int8 format using ONNX QDQ to reduce memory footprint and improve inference speed on resource-constrained hardware.
11
+
12
+ Yunet is known for its fast inference and accuracy, making it suitable for applications such as face tracking, augmented reality, and user authentication.
13
+
14
+ ## Network information
15
+
16
+ | Network information | Value |
17
+ |---------------------|----------------------------------------------------------------------------|
18
+ | Framework | ONNX |
19
+ | Quantization | int8 |
20
+ | Provenance | https://github.com/opencv/opencv_zoo/tree/main/models/face_detection_yunet |
21
+
22
+ ## Network inputs / outputs
23
+
24
+ | Input Shape | Description |
25
+ |--------------|----------------------------------------------------------|
26
+ | (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
27
+
28
+
29
+
30
+ YuNet produces multi-scale outputs for face detection and landmark localization. Yunet has 3 strides (32,16,8), for each stride S, outputs have the following shapes.
31
+
32
+ | Output Shape | Description |
33
+ |--------------|-------------------------------------------------------|
34
+ | (1, F, 1) | **Classification scores:** Probability of face |
35
+ | (1, F, 1) | **IoU scores:** Predicted IoU |
36
+ | (1, F, 4) | **Bounding box regression:** [dx, dy, dw, dh] offsets |
37
+ | (1, F, 10) | **Landmark regression:** 5 facial landmarks (x, y) |
38
+
39
+ Where:
40
+
41
+ - **F = (N/S)×(M/S)** (Total number of detections for a given stride S)
42
+ ## Recommended Platforms
43
+
44
+ | Platform | Supported | Recommended |
45
+ |----------|-----------|-------------|
46
+ | STM32L0 | [] | [] |
47
+ | STM32L4 | [] | [] |
48
+ | STM32U5 | [] | [] |
49
+ | STM32H7 | [] | [] |
50
+ | STM32MP1 | [] | [] |
51
+ | STM32MP2 | [] | [] |
52
+ | STM32N6 | [x] | [x] |
53
+
54
+ ## Performances
55
+
56
+ ### Metrics
57
+
58
+ Performance metrics are measured using default STM32Cube.AI configurations with input/output allocated buffers.
59
+
60
+ | Model | Dataset | Format | Resolution | Series | Internal RAM (KB) | External RAM (KB) | Weights Flash (KB) | STEdgeAI Core version |
61
+ |------------------------------------------------------------------------------------------------------|------------|--------|------------|---------|-------------------|-------------------|--------------------|-----------------------|
62
+ | [yunet 320x320](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/face_detection/yunet/Public_pretrainedmodel_public_dataset/widerface/yunetn_320/yunetn_320_qdq_int8.onnx) | WIDER FACE | Int8 | 3x320x320 | STM32N6 | 1130.49 | 0 | 92.31 | 3.0.0 |
63
+
64
+ ### Reference **NPU** inference time (example)
65
+
66
+ | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version |
67
+ |------------------------------------------------------------------------------------------------------|------------|--------|------------|---------------|------------------|---------------------|-----------|-----------------------|
68
+ | [yunet 320x320](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/face_detection/yunet/Public_pretrainedmodel_public_dataset/widerface/yunetn_320/yunetn_320_qdq_int8.onnx) | WIDER FACE | Int8 | 3x320x320 | STM32N6570-DK | NPU/MCU | 6.74 | 147.36 | 3.0.0 |
69
+
70
+
71
+ ## Integration and support
72
+
73
+ For integration examples and additional services, please refer to the STM32 AI model zoo services repository:
74
+ [https://github.com/STMicroelectronics/stm32ai-modelzoo-services](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
75
+
76
+
77
+ ## References
78
+
79
+ - Yunet paper: [https://link.springer.com/article/10.1007/s11633-023-1423-y](https://link.springer.com/article/10.1007/s11633-023-1423-y)
80
+ - MediaPipe Yunet model repository: [https://github.com/opencv/opencv_zoo/tree/main/models/face_detection_yunet]https://github.com/opencv/opencv_zoo/tree/main/models/face_detection_yunet)
81
+ - WIDER FACE dataset: [http://shuoyang1213.me/WIDERFACE/](http://shuoyang1213.me/WIDERFACE/)