Release AI-ModelZoo-4.0.0
Browse files
README.md
CHANGED
|
@@ -1,3 +1,81 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
---
|
| 4 |
+
# Yunet
|
| 5 |
+
|
| 6 |
+
## **Use case** : `Face detection`
|
| 7 |
+
|
| 8 |
+
# Model description
|
| 9 |
+
|
| 10 |
+
Yunet is a lightweight and efficient face detection model optimized for real-time applications on embedded devices. Yunet designed specifically for detecting faces and 5 keypoints (2x eyes, 2x mouth, nose). The models are quantized to int8 format using ONNX QDQ to reduce memory footprint and improve inference speed on resource-constrained hardware.
|
| 11 |
+
|
| 12 |
+
Yunet is known for its fast inference and accuracy, making it suitable for applications such as face tracking, augmented reality, and user authentication.
|
| 13 |
+
|
| 14 |
+
## Network information
|
| 15 |
+
|
| 16 |
+
| Network information | Value |
|
| 17 |
+
|---------------------|----------------------------------------------------------------------------|
|
| 18 |
+
| Framework | ONNX |
|
| 19 |
+
| Quantization | int8 |
|
| 20 |
+
| Provenance | https://github.com/opencv/opencv_zoo/tree/main/models/face_detection_yunet |
|
| 21 |
+
|
| 22 |
+
## Network inputs / outputs
|
| 23 |
+
|
| 24 |
+
| Input Shape | Description |
|
| 25 |
+
|--------------|----------------------------------------------------------|
|
| 26 |
+
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
YuNet produces multi-scale outputs for face detection and landmark localization. Yunet has 3 strides (32,16,8), for each stride S, outputs have the following shapes.
|
| 31 |
+
|
| 32 |
+
| Output Shape | Description |
|
| 33 |
+
|--------------|-------------------------------------------------------|
|
| 34 |
+
| (1, F, 1) | **Classification scores:** Probability of face |
|
| 35 |
+
| (1, F, 1) | **IoU scores:** Predicted IoU |
|
| 36 |
+
| (1, F, 4) | **Bounding box regression:** [dx, dy, dw, dh] offsets |
|
| 37 |
+
| (1, F, 10) | **Landmark regression:** 5 facial landmarks (x, y) |
|
| 38 |
+
|
| 39 |
+
Where:
|
| 40 |
+
|
| 41 |
+
- **F = (N/S)×(M/S)** (Total number of detections for a given stride S)
|
| 42 |
+
## Recommended Platforms
|
| 43 |
+
|
| 44 |
+
| Platform | Supported | Recommended |
|
| 45 |
+
|----------|-----------|-------------|
|
| 46 |
+
| STM32L0 | [] | [] |
|
| 47 |
+
| STM32L4 | [] | [] |
|
| 48 |
+
| STM32U5 | [] | [] |
|
| 49 |
+
| STM32H7 | [] | [] |
|
| 50 |
+
| STM32MP1 | [] | [] |
|
| 51 |
+
| STM32MP2 | [] | [] |
|
| 52 |
+
| STM32N6 | [x] | [x] |
|
| 53 |
+
|
| 54 |
+
## Performances
|
| 55 |
+
|
| 56 |
+
### Metrics
|
| 57 |
+
|
| 58 |
+
Performance metrics are measured using default STM32Cube.AI configurations with input/output allocated buffers.
|
| 59 |
+
|
| 60 |
+
| Model | Dataset | Format | Resolution | Series | Internal RAM (KB) | External RAM (KB) | Weights Flash (KB) | STEdgeAI Core version |
|
| 61 |
+
|------------------------------------------------------------------------------------------------------|------------|--------|------------|---------|-------------------|-------------------|--------------------|-----------------------|
|
| 62 |
+
| [yunet 320x320](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/face_detection/yunet/Public_pretrainedmodel_public_dataset/widerface/yunetn_320/yunetn_320_qdq_int8.onnx) | WIDER FACE | Int8 | 3x320x320 | STM32N6 | 1130.49 | 0 | 92.31 | 3.0.0 |
|
| 63 |
+
|
| 64 |
+
### Reference **NPU** inference time (example)
|
| 65 |
+
|
| 66 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version |
|
| 67 |
+
|------------------------------------------------------------------------------------------------------|------------|--------|------------|---------------|------------------|---------------------|-----------|-----------------------|
|
| 68 |
+
| [yunet 320x320](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/face_detection/yunet/Public_pretrainedmodel_public_dataset/widerface/yunetn_320/yunetn_320_qdq_int8.onnx) | WIDER FACE | Int8 | 3x320x320 | STM32N6570-DK | NPU/MCU | 6.74 | 147.36 | 3.0.0 |
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
## Integration and support
|
| 72 |
+
|
| 73 |
+
For integration examples and additional services, please refer to the STM32 AI model zoo services repository:
|
| 74 |
+
[https://github.com/STMicroelectronics/stm32ai-modelzoo-services](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
## References
|
| 78 |
+
|
| 79 |
+
- Yunet paper: [https://link.springer.com/article/10.1007/s11633-023-1423-y](https://link.springer.com/article/10.1007/s11633-023-1423-y)
|
| 80 |
+
- MediaPipe Yunet model repository: [https://github.com/opencv/opencv_zoo/tree/main/models/face_detection_yunet]https://github.com/opencv/opencv_zoo/tree/main/models/face_detection_yunet)
|
| 81 |
+
- WIDER FACE dataset: [http://shuoyang1213.me/WIDERFACE/](http://shuoyang1213.me/WIDERFACE/)
|