--- license: apache-2.0 pipeline_tag: image-classification --- # SqueezeNet ## **Use case** : `Image classification` # Model description SqueezeNet is a pioneering compact architecture that achieves **AlexNet-level accuracy with 50x fewer parameters**. It introduced the "Fire module" combining squeeze and expand operations. The architecture features **Fire Modules** with squeeze (1x1) followed by expand (1x1 + 3x3) layers, employing **delayed downsampling** to maintain larger activation maps longer. It uses **no fully connected layers**, relying on global average pooling, resulting in an **extremely compact** model (<0.5MB original size). SqueezeNet is ideal for extremely constrained deployment scenarios, model compression research, and applications where model size is critical. (source: https://arxiv.org/abs/1602.07360) The model is quantized to **int8** using **ONNX Runtime** and exported for efficient deployment. ## Network information | Network Information | Value | |--------------------|-------| | Framework | Torch | | MParams | ~1.24 M | | Quantization | Int8 | | Provenance | https://github.com/DeepScale/SqueezeNet | | Paper | https://arxiv.org/abs/1602.07360 | ## Network inputs / outputs For an image resolution of NxM and P classes | Input Shape | Description | | ----- | ----------- | | (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 | | Output Shape | Description | | ----- | ----------- | | (1, P) | Per-class confidence for P classes in FLOAT32| ## Recommended platforms | Platform | Supported | Recommended | |----------|-----------|-----------| | STM32L0 |[]|[]| | STM32L4 |[]|[]| | STM32U5 |[]|[]| | STM32H7 |[]|[]| | STM32MP1 |[]|[]| | STM32MP2 |[]|[]| | STM32N6 |[x]|[x]| # Performances ## Metrics - Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option. - All the models are trained from scratch on Imagenet dataset ### Reference **NPU** memory footprint on Imagenet dataset (see Accuracy for details on dataset) | Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STEdgeAI Core version | |-------|---------|--------|------------|--------|--------------|--------------|---------------|----------------------| | [squeezenetv10_pt_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/squeezenet_pt/Public_pretrainedmodel_public_dataset/Imagenet/squeezenetv10_pt_224/squeezenetv10_pt_224_qdq_int8.onnx) | Imagenet | Int8 | 224×224×3 | STM32N6 | 2278.12 | 6683.06 | 1266.61 | 3.0.0 | ### Reference **NPU** inference time on Imagenet dataset (see Accuracy for details on dataset) | Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version | |--------|---------|--------|--------|-------------|------------------|------------------|---------------------|-------------------------| | [squeezenetv10_pt_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/squeezenet_pt/Public_pretrainedmodel_public_dataset/Imagenet/squeezenetv10_pt_224/squeezenetv10_pt_224_qdq_int8.onnx) | Imagenet | Int8 | 224×224×3 | STM32N6570-DK | NPU/MCU | 121.20 | 8.25 | 3.0.0 | ### Accuracy with Imagenet dataset | Model | Format | Resolution | Top 1 Accuracy | | --- | --- | --- | --- | | [squeezenetv10_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/squeezenet_pt/Public_pretrainedmodel_public_dataset/Imagenet/squeezenetv10_pt_224/squeezenetv10_pt_224.onnx) | Float | 224x224x3 | 62.11 % | | [squeezenetv10_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/squeezenet_pt/Public_pretrainedmodel_public_dataset/Imagenet/squeezenetv10_pt_224/squeezenetv10_pt_224_qdq_int8.onnx) | Int8 | 224x224x3 | 58.43 % | | Model | Format | Resolution | Top 1 Accuracy | | --- | --- | --- | --- | | [squeezenetv10_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/squeezenet_pt/Public_pretrainedmodel_public_dataset/Imagenet/squeezenetv10_pt_224/squeezenetv10_pt_224.onnx) | Float | 224x224x3 | 62.11 % | | [squeezenetv10_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/squeezenet_pt/Public_pretrainedmodel_public_dataset/Imagenet/squeezenetv10_pt_224/squeezenetv10_pt_224_qdq_int8.onnx) | Int8 | 224x224x3 | 58.43 % | ## Retraining and Integration in a simple example: Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services) # References [1] - **Dataset**: Imagenet (ILSVRC 2012) — https://www.image-net.org/ [2] - **Model**: SqueezeNet — https://github.com/DeepScale/SqueezeNet