Update README.md
Browse files
README.md
CHANGED
|
@@ -1,6 +1,154 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: other
|
| 3 |
-
license_name: sla0044
|
| 4 |
-
license_link: >-
|
| 5 |
-
https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
|
| 6 |
-
---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: other
|
| 3 |
+
license_name: sla0044
|
| 4 |
+
license_link: >-
|
| 5 |
+
https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/LICENSE.md
|
| 6 |
+
---
|
| 7 |
+
# EfficientNet v2
|
| 8 |
+
|
| 9 |
+
## **Use case** : `Image classification`
|
| 10 |
+
|
| 11 |
+
# Model description
|
| 12 |
+
|
| 13 |
+
|
| 14 |
+
EfficientNet v2 family is one of the best topology for image classification. It has been obtained through neural architecture search with a special care given to training time
|
| 15 |
+
and number of parameters reduction.
|
| 16 |
+
|
| 17 |
+
This family of networks comprises various subtypes: B0 (224x224), B1 (240x240), B2 (260x260), B3 (300x300), S (384x384) ranked by depth and width increasing order.
|
| 18 |
+
There are also M, L, XL variants but too large to be executed efficiently on STM32N6.
|
| 19 |
+
|
| 20 |
+
All these networks are already available on https://www.tensorflow.org/api_docs/python/tf/keras/applications/ pre-trained on ImageNet.
|
| 21 |
+
|
| 22 |
+
|
| 23 |
+
## Network information
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
| Network Information | Value |
|
| 27 |
+
|---------------------|----------------------------------------------------------------------------------|
|
| 28 |
+
| Framework | TensorFlow Lite/ONNX quantizer |
|
| 29 |
+
| MParams type=B0 | 7.1 M |
|
| 30 |
+
| Quantization | int8 |
|
| 31 |
+
| Provenance | https://www.tensorflow.org/api_docs/python/tf/keras/applications/efficientnet_v2 |
|
| 32 |
+
| Paper | https://arxiv.org/pdf/2104.00298 |
|
| 33 |
+
|
| 34 |
+
The models are quantized using tensorflow lite converter or ONNX quantizer.
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
## Network inputs / outputs
|
| 38 |
+
|
| 39 |
+
|
| 40 |
+
For an image resolution of NxM and P classes
|
| 41 |
+
|
| 42 |
+
| Input Shape | Description |
|
| 43 |
+
|---------------|---------------------------------------------------------------------|
|
| 44 |
+
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 for tflite |
|
| 45 |
+
| (1, 3, N, M) | Single NxM RGB image with INT8 values between -128 and 127 for ONNX |
|
| 46 |
+
|
| 47 |
+
| Output Shape | Description |
|
| 48 |
+
| ----- |----------------------------------------------------------|
|
| 49 |
+
| (1, P) | Per-class confidence for P classes in FLOAT32 for tflite |
|
| 50 |
+
| (1, P) | Per-class confidence for P classes in FLOAT32 for ONNX |
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
## Recommended platforms
|
| 54 |
+
|
| 55 |
+
|
| 56 |
+
| Platform | Supported | Recommended |
|
| 57 |
+
|-----------|-----------|-------------|
|
| 58 |
+
| STM32L0 |[]| [] |
|
| 59 |
+
| STM32L4 |[]| [] |
|
| 60 |
+
| STM32U5 |[]| [] |
|
| 61 |
+
| STM32H7 |[]| [] |
|
| 62 |
+
| STM32MP1 |[x]| [x] |
|
| 63 |
+
| STM32MP2 |[x]| [x] |
|
| 64 |
+
| STM32N6 |[x]| [x] |
|
| 65 |
+
|
| 66 |
+
|
| 67 |
+
# Performances
|
| 68 |
+
|
| 69 |
+
## Metrics
|
| 70 |
+
|
| 71 |
+
Measures are done with default STM32Cube.AI configuration with enabled input / output allocated option.
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
### Reference **NPU** memory footprint on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
| 75 |
+
|Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STM32Cube.AI version | STEdgeAI Core version |
|
| 76 |
+
|----------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
| 77 |
+
| [efficientnet_v2B0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx) | food-101 | Int8 | 224x224x3 | STM32N6 | 1834.44 |0.0| 7553.77 | 10.0.0 | 2.0.0 |
|
| 78 |
+
| [efficientnet_v2B1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx) | food-101 | Int8 | 240x240x3 | STM32N6 | 2589.97 |0.0| 8924.78 | 10.0.0 | 2.0.0 |
|
| 79 |
+
| [efficientnet_v2B2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx) | food-101 | Int8 | 260x260x3 | STM32N6 | 2629.56 |528.12| 11212.75| 10.0.0 | 2.0.0 |
|
| 80 |
+
| [efficientnet_v2S_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx) | food-10 | Int8 | 384x384x3 | STM32N6 | 2700 | 6912 | 25756.92 | 10.0.0 | 2.0.0 |
|
| 81 |
+
| [efficientnet_v2B0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224_qdq_int8.onnx) | ImageNet | Int8 | 224x224x3 | STM32N6 | 1834.44 | 0.0 | 8680.39 | 10.0.0 | 2.0.0 |
|
| 82 |
+
| [efficientnet_v2B1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx) | ImageNet | Int8 | 240x240x3 | STM32N6 | 2589.97 | 0.0 | 10051.7 | 10.0.0 | 2.0.0 |
|
| 83 |
+
| [efficientnet_v2B2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx) | ImageNet | Int8 | 260x260x3 | STM32N6 | 2629.56 | 528.12 | 12451.77 | 10.0.0 | 2.0.0 |
|
| 84 |
+
| [efficientnet_v2S_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx) | ImageNet | Int8 | 384x384x3 | STM32N6 | 2700 | 6912 | 26884.47 | 10.0.0 | 2.0.0 |
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
### Reference **NPU** inference time on food-101 and ImageNet dataset (see Accuracy for details on dataset)
|
| 88 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STM32Cube.AI version | STEdgeAI Core version |
|
| 89 |
+
|--------|------------------|--------|-------------|------------------|------------------|---------------------|-------|----------------------|-------------------------|
|
| 90 |
+
| [efficientnet_v2B0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx) | food-101 | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 54.32 | 18.41 | 10.0.0 | 2.0.0 |
|
| 91 |
+
| [efficientnet_v2B1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx) | food-101 | Int8 | 240x240x3 | STM32N6570-DK | NPU/MCU | 73.89 | 13.53 | 10.0.0 | 2.0.0 |
|
| 92 |
+
| [efficientnet_v2B2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx) | food-101 | Int8 | 260x260x3 | STM32N6570-DK | NPU/MCU | 146.01 | 6.85 | 10.0.0 | 2.0.0 |
|
| 93 |
+
| [efficientnet_v2S_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx) | food-101 | Int8 | 384x384x3 | STM32N6570-DK | NPU/MCU | 842 | 1.19 | 10.0.0 | 2.0.0 |
|
| 94 |
+
| [efficientnet_v2B0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224_qdq_int8.onnx) | ImageNet | Int8 | 224x224x3 | STM32N6570-DK | NPU/MCU | 57.5 | 17.39 | 10.0.0 | 2.0.0 |
|
| 95 |
+
| [efficientnet_v2B1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx) | ImageNet | Int8 | 240x240x3 | STM32N6570-DK | NPU/MCU | 77.25 | 12.94 | 10.0.0 | 2.0.0 |
|
| 96 |
+
| [efficientnet_v2B2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx) | ImageNet | Int8 | 260x260x3 | STM32N6570-DK | NPU/MCU | 148.78 | 6.72 | 10.0.0 | 2.0.0 |
|
| 97 |
+
| [efficientnet_v2S_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx) | ImageNet | Int8 | 384x384x3 | STM32N6570-DK | NPU/MCU | 809.73 | 1.23 | 10.0.0 | 2.0.0 |
|
| 98 |
+
|
| 99 |
+
* The deployment of all the models listed in the table is supported, except for the efficientnet_v2S_384 model, for which support is coming soon.
|
| 100 |
+
### Accuracy with Food-101 dataset
|
| 101 |
+
|
| 102 |
+
Dataset details: [link](https://data.vision.ee.ethz.ch/cvl/datasets_extra/food-101/) , License [-](), Quotation[[3]](#3) , Number of classes: 101 , Number of images: 101 000
|
| 103 |
+
|
| 104 |
+
| Model | Format | Resolution | Top 1 Accuracy |
|
| 105 |
+
|--------------------------------------------------------------------------------------------------------------------------------------------------|--------|-----------|----------------|
|
| 106 |
+
| [efficientnet_v2B0_224_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft.h5) | Float | 224x224x3 | 81.35 % |
|
| 107 |
+
| [efficientnet_v2B0_224_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B0_224_fft/efficientnet_v2B0_224_fft_qdq_int8.onnx) | Int8 | 224x224x3 | 81.1 % |
|
| 108 |
+
| [efficientnet_v2B1_240_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft.h5) | Float | 240x240x3 | 83.23 % |
|
| 109 |
+
| [efficientnet_v2B1_240_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B1_240_fft/efficientnet_v2B1_240_fft_qdq_int8.onnx) | Int8 | 240x240x3 | 82.95 % |
|
| 110 |
+
| [efficientnet_v2B2_260_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft.h5) | Float | 260x260x3 | 84.37 % |
|
| 111 |
+
| [efficientnet_v2B2_260_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2B2_260_fft/efficientnet_v2B2_260_fft_qdq_int8.onnx) | Int8 | 260x260x3 | 84.04 % |
|
| 112 |
+
| [efficientnet_v2S_384_fft](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft.h5) | Float | 384x384x3 | 88.16 % |
|
| 113 |
+
| [efficientnet_v2S_384_fft onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/ST_pretrainedmodel_public_dataset/food-101/efficientnet_v2S_384_fft/efficientnet_v2S_384_fft_qdq_int8.onnx) | Int8 | 384x384x3 | 87.34 % |
|
| 114 |
+
|
| 115 |
+
|
| 116 |
+
### Accuracy with ImageNet
|
| 117 |
+
|
| 118 |
+
Dataset details: [link](https://www.image-net.org), License: BSD-3-Clause, Quotation[[4]](#4)
|
| 119 |
+
Number of classes: 1000.
|
| 120 |
+
To perform the quantization, we calibrated the activations with a random subset of the training set.
|
| 121 |
+
For the sake of simplicity, the accuracy reported here was estimated on the 10000 labelled images of the validation set.
|
| 122 |
+
|
| 123 |
+
| Model | Format | Resolution | Top 1 Accuracy |
|
| 124 |
+
|------------------------------------------------------------------------------------------------------------------------------------------|--------|------------|----------------|
|
| 125 |
+
| [efficientnet_v2B0_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224.h5) | Float | 224x224x3 | 73.94 % |
|
| 126 |
+
| [efficientnet_v2B0_224 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B0_224/efficientnet_v2B0_224_qdq_int8.onnx) | Int8 | 224x224x3 | 72.21 % |
|
| 127 |
+
| [efficientnet_v2B1_240](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240.h5) | Float | 240x240x3 | 76.14 % |
|
| 128 |
+
| [efficientnet_v2B1_240 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B1_240/efficientnet_v2B1_240_qdq_int8.onnx) | Int8 | 240x240x3 | 75.5 % |
|
| 129 |
+
| [efficientnet_v2B2_260](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260.h5) | Float | 260x260x3 | 76.58 % |
|
| 130 |
+
| [efficientnet_v2B2_260 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2B2_260/efficientnet_v2B2_260_qdq_int8.onnx) | Int8 | 260x260x3 | 76.26 % |
|
| 131 |
+
| [efficientnet_v2S_384](./Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384.h5) | Float | 384x384x3 | 83.52 % |
|
| 132 |
+
| [efficientnet_v2S_384 onnx](https://github.com/STMicroelectronics/stm32ai-modelzoo/image_classification/efficientnetv2/Public_pretrainedmodel_public_dataset/ImageNet/efficientnet_v2S_384/efficientnet_v2S_384_qdq_int8.onnx) | Int8 | 384x384x3 | 83.07 % |
|
| 133 |
+
|
| 134 |
+
|
| 135 |
+
## Retraining and Integration in a simple example:
|
| 136 |
+
|
| 137 |
+
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
|
| 138 |
+
|
| 139 |
+
|
| 140 |
+
# References
|
| 141 |
+
|
| 142 |
+
<a id="1">[1]</a>
|
| 143 |
+
"Tf_flowers : tensorflow datasets," TensorFlow. [Online]. Available: https://www.tensorflow.org/datasets/catalog/tf_flowers.
|
| 144 |
+
|
| 145 |
+
<a id="2">[2]</a>
|
| 146 |
+
J, ARUN PANDIAN; GOPAL, GEETHARAMANI (2019), "Data for: Identification of Plant Leaf Diseases Using a 9-layer Deep Convolutional Neural Network", Mendeley Data, V1, doi: 10.17632/tywbtsjrjv.1
|
| 147 |
+
|
| 148 |
+
<a id="3">[3]</a>
|
| 149 |
+
L. Bossard, M. Guillaumin, and L. Van Gool, "Food-101 -- Mining Discriminative Components with Random Forests." European Conference on Computer Vision, 2014.
|
| 150 |
+
|
| 151 |
+
<a id="4">[4]</a>
|
| 152 |
+
Olga Russakovsky*, Jia Deng*, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg and Li Fei-Fei.
|
| 153 |
+
(* = equal contribution) ImageNet Large Scale Visual Recognition Challenge.
|
| 154 |
+
|