Release AI-ModelZoo-4.0.0
Browse files
README.md
CHANGED
|
@@ -1,3 +1,124 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: apache-2.0
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
pipeline_tag: image-classification
|
| 4 |
+
---
|
| 5 |
+
# DLA (Deep Layer Aggregation)
|
| 6 |
+
|
| 7 |
+
## **Use case** : `Image classification`
|
| 8 |
+
|
| 9 |
+
# Model description
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
Deep Layer Aggregation (DLA) networks introduce iterative and hierarchical structures for aggregating features across layers. DLA extends standard architectures by merging features from different depths and resolutions, enabling **richer semantic and spatial information flow**.
|
| 13 |
+
|
| 14 |
+
DLA employs **Hierarchical Deep Aggregation (HDA)** to merge feature hierarchies combining features from different depths, and **Iterative Deep Aggregation (IDA)** to progressively refine resolution and semantic information. The dense connections enable gradient flow and feature reuse across the network.
|
| 15 |
+
|
| 16 |
+
DLA is particularly well-suited for applications requiring multi-scale feature representation, such as semantic segmentation and object detection.
|
| 17 |
+
|
| 18 |
+
(source: https://arxiv.org/abs/1707.06484)
|
| 19 |
+
|
| 20 |
+
The model is quantized to **int8** using **ONNX Runtime** and exported for efficient deployment.
|
| 21 |
+
|
| 22 |
+
## Network information
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
| Network Information | Value |
|
| 26 |
+
|--------------------|-------|
|
| 27 |
+
| Framework | Torch |
|
| 28 |
+
| MParams | ~1.04–1.25 M |
|
| 29 |
+
| Quantization | Int8 |
|
| 30 |
+
| Provenance | https://github.com/ucbdrive/dla |
|
| 31 |
+
| Paper | https://arxiv.org/abs/1707.06484 |
|
| 32 |
+
|
| 33 |
+
## Network inputs / outputs
|
| 34 |
+
|
| 35 |
+
|
| 36 |
+
For an image resolution of NxM and P classes
|
| 37 |
+
|
| 38 |
+
| Input Shape | Description |
|
| 39 |
+
| ----- | ----------- |
|
| 40 |
+
| (1, N, M, 3) | Single NxM RGB image with UINT8 values between 0 and 255 |
|
| 41 |
+
|
| 42 |
+
| Output Shape | Description |
|
| 43 |
+
| ----- | ----------- |
|
| 44 |
+
| (1, P) | Per-class confidence for P classes in FLOAT32|
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
## Recommended platforms
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
| Platform | Supported | Recommended |
|
| 51 |
+
|----------|-----------|-----------|
|
| 52 |
+
| STM32L0 |[]|[]|
|
| 53 |
+
| STM32L4 |[]|[]|
|
| 54 |
+
| STM32U5 |[]|[]|
|
| 55 |
+
| STM32H7 |[]|[]|
|
| 56 |
+
| STM32MP1 |[]|[]|
|
| 57 |
+
| STM32MP2 |[]|[]|
|
| 58 |
+
| STM32N6 |[x]|[x]|
|
| 59 |
+
|
| 60 |
+
# Performances
|
| 61 |
+
|
| 62 |
+
## Metrics
|
| 63 |
+
|
| 64 |
+
- Measures are done with default STEdgeAI Core configuration with enabled input / output allocated option.
|
| 65 |
+
- All the models are trained from scratch on Imagenet dataset
|
| 66 |
+
|
| 67 |
+
### Reference **NPU** memory footprint on Imagenet dataset (see Accuracy for details on dataset)
|
| 68 |
+
| Model | Dataset | Format | Resolution | Series | Internal RAM (KiB) | External RAM (KiB) | Weights Flash (KiB) | STEdgeAI Core version |
|
| 69 |
+
|-------|---------|--------|------------|--------|--------------|--------------|---------------|----------------------|
|
| 70 |
+
| [dla46xc_pt_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla46xc_pt_224/dla46xc_pt_224_qdq_int8.onnx) | Imagenet | Int8 | 224×224×3 | STM32N6 | 2361 | 6272 | 1036.41 | 3.0.0 |
|
| 71 |
+
| [dla46c_pt_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla46c_pt_224/dla46c_pt_224_qdq_int8.onnx) | Imagenet | Int8 | 224×224×3 | STM32N6 | 2361 | 6272 | 1266.66 | 3.0.0 |
|
| 72 |
+
| [dla60xc_pt_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla60xc_pt_224/dla60xc_pt_224_qdq_int8.onnx) | Imagenet | Int8 | 224×224×3 | STM32N6 | 2361 | 6272 | 1278.52 | 3.0.0 |
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
### Reference **NPU** inference time on Imagenet dataset (see Accuracy for details on dataset)
|
| 77 |
+
| Model | Dataset | Format | Resolution | Board | Execution Engine | Inference time (ms) | Inf / sec | STEdgeAI Core version |
|
| 78 |
+
|-------|---------|--------|--------|------------|-------|-----------------|-------------------|---------------------|
|
| 79 |
+
| [dla46c_pt_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla46c_pt_224/dla46c_pt_224_qdq_int8.onnx) | Imagenet | Int8 | 224×224×3 | STM32N6570-DK | NPU/MCU | 184.23 | 5.43 | 3.0.0 |
|
| 80 |
+
| [dla46xc_pt_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla46xc_pt_224/dla46xc_pt_224_qdq_int8.onnx) | Imagenet | Int8 | 224×224×3 | STM32N6570-DK | NPU/MCU | 186.36 | 5.37 | 3.0.0 |
|
| 81 |
+
| [dla60xc_pt_224](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla60xc_pt_224/dla60xc_pt_224_qdq_int8.onnx) | Imagenet | Int8 | 224×224×3 | STM32N6570-DK | NPU/MCU | 187.54 | 5.33 | 3.0.0 |
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
|
| 86 |
+
### Accuracy with Imagenet dataset
|
| 87 |
+
|
| 88 |
+
| Model | Format | Resolution | Top 1 Accuracy |
|
| 89 |
+
| --- | --- | --- | --- |
|
| 90 |
+
| [dla46c_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla46c_pt_224/dla46c_pt_224.onnx) | Float | 224x224x3 | 65.03 % |
|
| 91 |
+
| [dla46c_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla46c_pt_224/dla46c_pt_224_qdq_int8.onnx) | Int8 | 224x224x3 | 64.43 % |
|
| 92 |
+
| [dla46xc_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla46xc_pt_224/dla46xc_pt_224.onnx) | Float | 224x224x3 | 66.50 % |
|
| 93 |
+
| [dla46xc_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla46xc_pt_224/dla46xc_pt_224_qdq_int8.onnx) | Int8 | 224x224x3 | 66.06 % |
|
| 94 |
+
| [dla60xc_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla60xc_pt_224/dla60xc_pt_224.onnx) | Float | 224x224x3 | 68.30 % |
|
| 95 |
+
| [dla60xc_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla60xc_pt_224/dla60xc_pt_224_qdq_int8.onnx) | Int8 | 224x224x3 | 67.73 % |
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
Dataset details: [link](https://www.image-net.org)
|
| 99 |
+
Number of classes: 1000.
|
| 100 |
+
To perform the quantization, we calibrated the activations with a random subset of the training set.
|
| 101 |
+
For the sake of simplicity, the accuracy reported here was estimated on the 50000 labelled images of the validation set.
|
| 102 |
+
|
| 103 |
+
| Model | Format | Resolution | Top 1 Accuracy |
|
| 104 |
+
| --- | --- | --- | --- |
|
| 105 |
+
| [dla46c_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla46c_pt_224/dla46c_pt_224.onnx) | Float | 224x224x3 | 65.03 % |
|
| 106 |
+
| [dla46c_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla46c_pt_224/dla46c_pt_224_qdq_int8.onnx) | Int8 | 224x224x3 | 64.43 % |
|
| 107 |
+
| [dla46xc_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla46xc_pt_224/dla46xc_pt_224.onnx) | Float | 224x224x3 | 66.50 % |
|
| 108 |
+
| [dla46xc_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla46xc_pt_224/dla46xc_pt_224_qdq_int8.onnx) | Int8 | 224x224x3 | 66.06 % |
|
| 109 |
+
| [dla60xc_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla60xc_pt_224/dla60xc_pt_224.onnx) | Float | 224x224x3 | 68.30 % |
|
| 110 |
+
| [dla60xc_pt](https://github.com/STMicroelectronics/stm32ai-modelzoo/tree/main/image_classification/dla_pt/Public_pretrainedmodel_public_dataset/Imagenet/dla60xc_pt_224/dla60xc_pt_224_qdq_int8.onnx) | Int8 | 224x224x3 | 67.73 % |
|
| 111 |
+
|
| 112 |
+
|
| 113 |
+
|
| 114 |
+
## Retraining and Integration in a simple example:
|
| 115 |
+
|
| 116 |
+
Please refer to the stm32ai-modelzoo-services GitHub [here](https://github.com/STMicroelectronics/stm32ai-modelzoo-services)
|
| 117 |
+
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
# References
|
| 121 |
+
|
| 122 |
+
<a id="1">[1]</a> - **Dataset**: Imagenet (ILSVRC 2012) — https://www.image-net.org/
|
| 123 |
+
|
| 124 |
+
<a id="2">[2]</a> - **Model**: Deep Layer Aggregation — https://github.com/ucbdrive/dla
|