File size: 15,909 Bytes
3d5551b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
import os
import time
import copy
import logging

import torch
import torch.nn.functional as F
import torch.distributed as dist
import pandas as pd

from collections import defaultdict
from dataclasses import dataclass
from torch import nn, Tensor
from transformers import PreTrainedModel, AutoModelForSeq2SeqLM, AutoTokenizer
from transformers.file_utils import ModelOutput
from typing import Dict, Optional

from tevatron.tree import TreeBuilder
from tevatron.arguments import (
    GLENP2ModelArguments as ModelArguments,
    GLENP2TrainingArguments as TrainingArguments,
)

logger = logging.getLogger(__name__)


@dataclass
class EncoderDecoderOutputForSeq2SeqLM(ModelOutput):
    q_reps: Optional[Tensor] = None
    p_reps: Optional[Tensor] = None
    loss: Optional[Tensor] = None
    scores: Optional[Tensor] = None


class EncoderDecoderModelForSeq2SeqLM(nn.Module):
    TRANSFORMER_CLS = AutoModelForSeq2SeqLM

    def __init__(
        self,
        lm_q: PreTrainedModel,
        lm_p: PreTrainedModel,
        untie_encoder: bool = False,
        negatives_x_device: bool = False,
        tokenizer=None,
    ):
        super().__init__()
        self.lm_q = lm_q
        self.lm_p = lm_p
        self.cross_entropy = nn.CrossEntropyLoss(reduction="mean")
        self.negatives_x_device = negatives_x_device
        self.untie_encoder = untie_encoder
        if self.negatives_x_device:
            if not dist.is_initialized():
                raise ValueError(
                    "Distributed training has not been initialized for representation all gather."
                )
            self.process_rank = dist.get_rank()
            self.world_size = dist.get_world_size()

        self.tokenizer = tokenizer
        self.gen_r1_list = []

    def forward(
        self, query: Dict[str, Tensor] = None, passage: Dict[str, Tensor] = None
    ):
        # query, passage: input_ids (B * L), attention_mask (B * L)
        decoder_start_token_id = self.config.decoder_start_token_id
        if query is not None:
            query["decoder_input_ids"] = (
                torch.zeros(query["input_ids"].shape[0], 1, dtype=torch.long)
                .fill_(decoder_start_token_id)
                .to(query["input_ids"].device)
            )  # (B, 1)
            query["decoder_attention_mask"] = torch.ones(
                query["input_ids"].shape[0], 1, dtype=torch.long
            ).to(
                query["input_ids"].device
            )  # (B, 1)
        if passage is not None:
            passage["decoder_input_ids"] = (
                torch.zeros(passage["input_ids"].shape[0], 1, dtype=torch.long)
                .fill_(decoder_start_token_id)
                .to(passage["input_ids"].device)
            )  # (B * train_n_passages, 1)
            passage["decoder_attention_mask"] = torch.ones(
                passage["input_ids"].shape[0], 1, dtype=torch.long
            ).to(
                passage["input_ids"].device
            )  # (B * train_n_passages, 1)

        q_reps = self.encode_query(query)

        if passage is None:
            p_reps, p_reps_dt = None, None  # for gradcache
        else:
            p_reps, p_attention, p_reps_dt = self.encode_passage(passage)

            predid2oldid = self.trainer.train_dataset.predid2oldid
            oldid2predid = self.trainer.train_dataset.oldid2predid

            pred_docids = p_attention.argmax(dim=-1).cpu().tolist()

            # Cache predicted ids for prefix-aware negative sampling
            if (
                self.trainer.data_args.negative_passage_type == "self"
                and p_reps is not None
            ):
                for oldid, predid in zip(passage["oldid"].cpu().tolist(), pred_docids):
                    for j in range(1, len(predid) + 1):
                        cur_predid = "-".join([str(x) for x in predid[:j]])
                        predid2oldid[cur_predid].add(oldid)
                    oldid2predid[oldid] = cur_predid

        # for inference
        if q_reps is None or p_reps is None:
            return EncoderDecoderOutputForSeq2SeqLM(q_reps=q_reps, p_reps=p_reps_dt)

        # for training
        loss, lm_loss = 0, 0
        gen_r1 = 0
        if self.training:
            if self.negatives_x_device:
                q_reps = self._dist_gather_tensor(q_reps)
                p_reps = self._dist_gather_tensor(p_reps)

            scores = self.compute_similarity(
                q_reps, p_reps
            )  # (B, B * train_n_passages)
            scores = scores.view(q_reps.size(0), -1)  # (B, B * train_n_passages)

            scores = scores / self.softmax_temperature

            target = torch.arange(
                scores.size(0), device=scores.device, dtype=torch.long
            )
            target = target * (p_reps.size(0) // q_reps.size(0))

            loss = self.compute_loss(scores, target)

            if "infonce_loss" in self.model_args.__dict__:
                loss = loss * self.model_args.infonce_loss

            if self.negatives_x_device:
                loss = loss * self.world_size  # counter average weight reduction

            lm_logits = q_reps @ self.lm_q.shared.weight.T  # (B, L, V)

            if self.model_args.mask_special_tokens_for_decoding:
                special_token_ids = self.tokenizer.all_special_ids
                special_token_ids = [
                    x
                    for x in special_token_ids
                    if x
                    not in [
                        self.tokenizer.bos_token_id,
                        self.tokenizer.eos_token_id,
                        self.tokenizer.pad_token_id,
                    ]
                ]
                lm_logits[:, :, special_token_ids] = -1e9

            lm_logits = lm_logits / self.softmax_temperature  # (B, L, V)

            # For each query, select the corresponding positive document
            pos_doc = torch.arange(q_reps.size(0), dtype=torch.long)  # (B)
            pos_doc = pos_doc * (p_reps.size(0) // q_reps.size(0))  # (B)
            pos_p_attention = p_attention[
                pos_doc, :, :
            ]  # (B * train_n_passages, L, V) -> (B, L, V)

            lm_targets = pos_p_attention.argmax(dim=-1)  # (B, L)
            if (
                "q_to_docid_loss" in self.model_args.__dict__
                and self.model_args.q_to_docid_loss > 0
            ):
                lm_loss = self.cross_entropy(
                    lm_logits.view(-1, lm_logits.size(-1)), lm_targets.view(-1)
                )

                loss += lm_loss * self.model_args.q_to_docid_loss

            if (
                "cosine_point_loss" in self.model_args.__dict__
                and self.model_args.cosine_point_loss > 0
            ):
                pos_doc_lm_logits = (
                    p_reps_dt[pos_doc] @ self.lm_p.shared.weight.T
                )  # (B, L, V)
                query_lm_logits = lm_logits  # (B, L, V)

                pos_doc_id_weight, pos_doc_id = pos_doc_lm_logits.max(dim=-1)  # (B, L)
                query_id_weight = query_lm_logits.gather(
                    dim=-1, index=pos_doc_id.unsqueeze(-1)
                ).squeeze(
                    -1
                )  # (B, L)

                cosine_sim = F.cosine_similarity(
                    pos_doc_id_weight, query_id_weight, dim=-1
                )  # (B)
                cosine_loss = torch.mean(1 - cosine_sim)  # ()

                loss += cosine_loss * self.model_args.cosine_point_loss

                query_preds = lm_logits.argmax(dim=-1)  # (B, L)
                gen_r1 = (query_preds == lm_targets).float().mean(dim=1) == 1  # (B)
                self.gen_r1_list += gen_r1.cpu().tolist()

        # for eval
        else:
            scores = self.compute_similarity(q_reps, p_reps)
            loss = None
        return EncoderDecoderOutputForSeq2SeqLM(
            loss=loss, scores=scores, q_reps=q_reps, p_reps=p_reps_dt
        )

    def encode_passage(self, psg):
        raise NotImplementedError("EncoderDecoderModel is an abstract class")

    def encode_query(self, qry):
        raise NotImplementedError("EncoderDecoderModel is an abstract class")

    def compute_similarity(self, q_reps, p_reps):
        raise NotImplementedError("EncoderModel is an abstract class")

    def compute_loss(self, scores, target):
        return self.cross_entropy(scores, target)

    def build_tree(self, log_step: int = None, log_file: str = None):
        docid_df = pd.read_csv(
            self.model_args.docid_file_name,
            sep="\t",
            names=["oldid", "docid", "docid_logit", "text"],
            dtype={"oldid": str, "docid": str, "docid_logit": str, "text": str},
        ).loc[:, ["oldid", "docid", "docid_logit"]]

        lines = []

        # Log the time and step
        time_str = time.strftime("%Y%m%d-%H%M%S")
        lines.append(f"TIME={time_str}")
        lines.append(f"STEP={log_step}")

        # Check the uniqueness of docid and build docid2num_docs
        num_uniques = len(set(docid_df.docid))
        unique_ratio = num_uniques / len(docid_df)
        lines.append(
            f"num_uniques: {num_uniques}/{len(docid_df)} ({unique_ratio*100:.2f}%)"
        )
        lines.append("[Frequent Collision]")
        lines.append(docid_df.docid.value_counts()[:5].to_string())
        num_unique_tokens = [0] * 10
        docid2num_docs = dict(docid_df.docid.value_counts())
        for docid in docid_df.docid.unique():
            tokens = docid.split("<->")
            num_unique_token = len(set(tokens))
            num_unique_tokens[num_unique_token - 1] += 1
        lines.append(f"distribution of number of unique tokens: {num_unique_tokens}")

        # Build docid2oldids, oldid2docid_logit
        docid2oldids = defaultdict(list)
        oldid2docid_logit = dict()
        for docid, oldid, docid_logit in docid_df[
            ["docid", "oldid", "docid_logit"]
        ].values:
            docid2oldids[docid].append(oldid)
            oldid2docid_logit[oldid] = torch.tensor(
                [float(x) for x in docid_logit.split("<->")]
            )

        # Build oldid2docid
        oldid2docid = dict(zip(docid_df.oldid, docid_df.docid))
        if self.model_args.tree == 1:
            builder = TreeBuilder()
            all_id = []
            for docid in list(oldid2docid.values()):
                toks = docid.split("<->")
                toks = self.tokenizer.convert_tokens_to_ids(toks)
                if len(toks) != self.model_args.max_output_length - 1:
                    print(
                        f"length of docid of {docid} is not {self.model_args.max_output_length}"
                    )
                    toks = toks[: self.model_args.max_output_length - 1]
                all_id.append(toks)
                builder.add(toks)
            self.root = builder.build()

        self.docid2num_docs = docid2num_docs
        self.docid2oldids = docid2oldids
        self.oldid2docid_logit = oldid2docid_logit
        self.oldid2docid = oldid2docid

        if log_file is not None:
            with open(log_file, "a") as f:
                f.write("\n".join(lines) + "\n")
        else:
            print("\n".join(lines))

    def _dist_gather_tensor(self, t: Optional[torch.Tensor]):
        if t is None:
            return None
        t = t.contiguous()

        all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
        dist.all_gather(all_tensors, t)

        all_tensors[self.process_rank] = t
        all_tensors = torch.cat(all_tensors, dim=0)

        return all_tensors

    @classmethod
    def build(
        cls,
        model_args: ModelArguments,
        train_args: TrainingArguments,
        tokenizer=None,
        **hf_kwargs,  # config, cache_dir
    ):
        cls.config = hf_kwargs["config"]
        cls.softmax_temperature = model_args.softmax_temperature
        cls.model_args = model_args

        # load local
        if os.path.isdir(model_args.model_name_or_path):
            if model_args.untie_encoder:
                _qry_model_path = os.path.join(
                    model_args.model_name_or_path, "query_model"
                )
                _psg_model_path = os.path.join(
                    model_args.model_name_or_path, "passage_model"
                )
                if not os.path.exists(_qry_model_path):
                    _qry_model_path = model_args.model_name_or_path
                    _psg_model_path = model_args.model_name_or_path
                logger.info(f"loading query model weight from {_qry_model_path}")
                lm_q = cls.TRANSFORMER_CLS.from_pretrained(_qry_model_path, **hf_kwargs)
                logger.info(f"loading passage model weight from {_psg_model_path}")
                lm_p = cls.TRANSFORMER_CLS.from_pretrained(_psg_model_path, **hf_kwargs)
            else:
                lm_q = cls.TRANSFORMER_CLS.from_pretrained(
                    model_args.model_name_or_path, **hf_kwargs
                )
                lm_p = lm_q
        # load pre-trained
        else:
            lm_q = cls.TRANSFORMER_CLS.from_pretrained(
                model_args.model_name_or_path, **hf_kwargs
            )
            lm_p = copy.deepcopy(lm_q) if model_args.untie_encoder else lm_q

        model = cls(
            lm_q=lm_q,
            lm_p=lm_p,
            negatives_x_device=train_args.negatives_x_device,
            untie_encoder=model_args.untie_encoder,
            tokenizer=tokenizer,
        )
        return model

    @classmethod
    def load(
        cls,
        model_args: ModelArguments,
        tokenizer: Optional[AutoTokenizer] = None,
        **hf_kwargs,  # config, cache_dir
    ):
        cls.config = hf_kwargs["config"]
        cls.softmax_temperature = model_args.softmax_temperature
        cls.model_args = model_args

        # load local
        untie_encoder = True
        if os.path.isdir(model_args.model_name_or_path):
            _qry_model_path = os.path.join(model_args.model_name_or_path, "query_model")
            _psg_model_path = os.path.join(
                model_args.model_name_or_path, "passage_model"
            )
            if os.path.exists(_qry_model_path):
                logger.info(f"found separate weight for query/passage encoders")
                logger.info(f"loading query model weight from {_qry_model_path}")
                lm_q = cls.TRANSFORMER_CLS.from_pretrained(_qry_model_path, **hf_kwargs)
                logger.info(f"loading passage model weight from {_psg_model_path}")
                lm_p = cls.TRANSFORMER_CLS.from_pretrained(_psg_model_path, **hf_kwargs)
                untie_encoder = False
            else:
                logger.info(f"try loading tied weight")
                logger.info(
                    f"loading model weight from {model_args.model_name_or_path}"
                )
                lm_q = cls.TRANSFORMER_CLS.from_pretrained(
                    model_args.model_name_or_path, **hf_kwargs
                )
                lm_p = lm_q
        else:
            logger.info(f"try loading tied weight")
            logger.info(f"loading model weight from {model_args.model_name_or_path}")
            lm_q = cls.TRANSFORMER_CLS.from_pretrained(
                model_args.model_name_or_path, **hf_kwargs
            )
            lm_p = lm_q

        model = cls(lm_q=lm_q, lm_p=lm_p, untie_encoder=untie_encoder)
        return model

    def save(self, output_dir: str):
        if self.untie_encoder:
            os.makedirs(os.path.join(output_dir, "query_model"))
            os.makedirs(os.path.join(output_dir, "passage_model"))
            self.lm_q.save_pretrained(os.path.join(output_dir, "query_model"))
            self.lm_p.save_pretrained(os.path.join(output_dir, "passage_model"))
        else:
            self.lm_q.save_pretrained(output_dir)