--- base_model: microsoft/resnet-101 library_name: transformers pipeline_tag: image-classification tags: - probex - model-j - weight-space-learning --- # Model-J: ResNet Model (model_idx_0921) This model is part of the **Model-J** dataset, introduced in: **Learning on Model Weights using Tree Experts** (CVPR 2025) by Eliahu Horwitz*, Bar Cavia*, Jonathan Kahana*, Yedid Hoshen
 ## Model Details | Attribute | Value | |---|---| | **Subset** | ResNet | | **Split** | test | | **Base Model** | `microsoft/resnet-101` | | **Dataset** | CIFAR100 (50 classes) | ## Training Hyperparameters | Parameter | Value | |---|---| | Learning Rate | 0.0001 | | LR Scheduler | constant_with_warmup | | Epochs | 3 | | Max Train Steps | 999 | | Batch Size | 64 | | Weight Decay | 0.009 | | Seed | 921 | | Random Crop | False | | Random Flip | False | ## Performance | Metric | Value | |---|---| | Train Accuracy | 0.9493 | | Val Accuracy | 0.8864 | | Test Accuracy | 0.8732 | ## Training Categories The model was fine-tuned on the following 50 CIFAR100 classes: `sunflower`, `chimpanzee`, `shark`, `television`, `man`, `lizard`, `pear`, `lawn_mower`, `oak_tree`, `tiger`, `shrew`, `cloud`, `skyscraper`, `tank`, `otter`, `rose`, `fox`, `cup`, `palm_tree`, `squirrel`, `kangaroo`, `mushroom`, `apple`, `hamster`, `bed`, `couch`, `forest`, `raccoon`, `streetcar`, `train`, `rabbit`, `leopard`, `possum`, `plain`, `lamp`, `telephone`, `plate`, `sweet_pepper`, `ray`, `baby`, `girl`, `turtle`, `porcupine`, `snake`, `road`, `trout`, `cockroach`, `orchid`, `bus`, `seal`