File size: 37,220 Bytes
4ba9398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
55b21e7
4ba9398
 
 
 
 
 
 
 
 
 
 
 
833d379
4ba9398
 
 
55b21e7
 
4ba9398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2d53f6
4ba9398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2d53f6
4ba9398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3e85610
4ba9398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bf64e7
4ba9398
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1bf64e7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4ba9398
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
# coding=utf-8
# Copyright 2026 OpenMOSS and the HuggingFace Inc. team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
from typing import Any, Dict, List, Optional, Tuple, Type, Union, Literal, Final, cast
from dataclasses import dataclass
from pathlib import Path
import re
import torchaudio

from transformers import processing_utils

processing_utils.MODALITY_TO_BASE_CLASS_MAPPING["audio_tokenizer"] = "PreTrainedModel"

import torch
from transformers import (
    PreTrainedTokenizerBase,
    BatchFeature,
    ProcessorMixin,
    logging,
    AutoConfig,
    AutoModel,
    AutoTokenizer,
)

from .configuration_moss_tts import MossTTSDelayConfig


def normalize_instruction(instruction: str) -> str:
    """
    Normalize instruction:
    1. Remove [] and {} tags
    2. Replace decorative symbols with comma
    3. Remove consecutive duplicate punctuation
    4. Remove line breaks
    5. If contains Chinese, replace English comma with Chinese comma
    6. Keep quotes
    """
    if not instruction:
        return instruction
    
    # Remove line breaks
    instruction = instruction.replace("\n", " ")
    
    # Remove [] and {} tags
    instruction = re.sub(r"\[.*?\]", "", instruction)
    instruction = re.sub(r"\{.*?\}", "", instruction)
    
    # Replace decorative symbols with comma
    decorative_chars = "【】《》()『』「」~-_"
    for char in decorative_chars:
        instruction = instruction.replace(char, ",")
    
    # Remove consecutive punctuation (keep only first one)
    instruction = re.sub(r'([,。!?,.!?;;])+', r'\1', instruction)
    
    # Check if contains Chinese characters
    has_chinese = bool(re.search(r'[\u4e00-\u9fff]', instruction))
    
    if has_chinese:
        # Replace English comma with Chinese comma
        instruction = instruction.replace(',', ',')
    
    return instruction.strip()

def normalize_text(text: str) -> str:
    """
    Normalize text:
    1. Remove [] and {} tags
    2. Replace decorative symbols with comma
    3. Remove consecutive duplicate punctuation
    4. Remove line breaks
    5. Remove quotes (only double quotes)
    """
    if not text:
        return text
    
    # Remove line breaks
    text = text.replace("\n", " ")
    
    # Remove [] and {} tags
    text = re.sub(r"\[.*?\]", "", text)
    text = re.sub(r"\{.*?\}", "", text)
    
    # Replace decorative symbols with comma
    decorative_chars = "【】《》()『』「」~"
    for char in decorative_chars:
        text = text.replace(char, ",")
    
    # Remove double quotes only (保留单引号)
    quotes = ['"', '"', '"']
    for q in quotes:
        text = text.replace(q, "")
    
    # Remove consecutive punctuation (keep only first one)
    text = re.sub(r'([,。!?,.!?;;])+', r'\1', text)
    
    return text.strip()

logger = logging.get_logger(__name__)


AUDIO_PLACEHOLDER = "<|audio|>"


@dataclass
class Message:
    def to_dict(self) -> Dict[str, Any]:
        raise NotImplementedError


@dataclass
class UserMessage(Message):
    text: Optional[str] = None
    reference: Optional[List[Optional[Union[str, torch.Tensor]]]] = None
    instruction: Optional[str] = None
    tokens: Optional[int] = None
    quality: Optional[str] = None
    sound_event: Optional[str] = None
    ambient_sound: Optional[str] = None
    language: Optional[str] = None

    def __post_init__(self):
        template = """<user_inst>
- Reference(s):
{reference}
- Instruction:
{instruction}
- Tokens:
{tokens}
- Quality:
{quality}
- Sound Event:
{sound_event}
- Ambient Sound:
{ambient_sound}
- Language:
{language}
- Text:
{text}
</user_inst>"""

        audio_codes_list = []
        if self.reference is None:
            reference = "None"
        elif isinstance(self.reference, List):
            reference = []
            for speaker_idx, speaker_reference in enumerate(self.reference):
                if speaker_reference is not None:
                    reference.append(f"[S{speaker_idx+1}]:\n{AUDIO_PLACEHOLDER}")
            reference = "\n".join(reference)
            audio_codes_list = [
                speaker_reference
                for speaker_reference in self.reference
                if speaker_reference is not None
            ]
        else:
            raise TypeError("`reference` should be exactly a list when it is not None.")

        content = (
            template.replace("{reference}", str(reference))
            .replace("{instruction}", str(self.instruction))
            .replace("{tokens}", str(self.tokens))
            .replace("{quality}", str(self.quality))
            .replace("{sound_event}", str(self.sound_event))
            .replace("{ambient_sound}", str(self.ambient_sound))
            .replace("{language}", str(self.language))
            .replace("{text}", str(self.text))
        )

        self._content = content
        self._audio_codes_list = audio_codes_list

    def to_dict(self):
        return {
            "role": "user",
            "content": self._content,
            "audio_codes_list": self._audio_codes_list,
        }


@dataclass
class AssistantMessage(Message):
    audio_codes_list: List[Union[str, torch.Tensor]]
    content: str = AUDIO_PLACEHOLDER

    def to_dict(self):
        return {
            "role": "assistant",
            "content": self.content,
            "audio_codes_list": self.audio_codes_list,
        }


USER_MESSAGE_FIELDS = (
    "text",
    "reference",
    "instruction",
    "tokens",
    "quality",
    "sound_event",
    "ambient_sound",
    "language",
)


class MossTTSDelayProcessor(ProcessorMixin):
    tokenizer_class = "AutoTokenizer"
    audio_tokenizer_class = "AutoModel"

    tokenizer: PreTrainedTokenizerBase
    audio_tokenizer: Any

    def __init__(
        self,
        tokenizer: PreTrainedTokenizerBase,
        audio_tokenizer: Any = None,
        model_config: Optional[MossTTSDelayConfig] = None,
        normalize_inputs: bool = False,
        **kwargs,
    ):
        super().__init__(tokenizer=tokenizer, audio_tokenizer=audio_tokenizer, **kwargs)

        # Explicit assignments for type-checkers; ProcessorMixin sets these too.
        self.tokenizer = tokenizer
        self.audio_tokenizer = audio_tokenizer
        if model_config is None:
            model_config = MossTTSDelayConfig()
        self.model_config = model_config
        self.normalize_inputs = normalize_inputs

        self.imstart_token_id = tokenizer.convert_tokens_to_ids("<|im_start|>")
        self.imend_token_id = tokenizer.convert_tokens_to_ids("<|im_end|>")
        self.newline_token_id = 198

        def _id_to_token(token_id: int) -> str:
            tok = tokenizer.convert_ids_to_tokens(int(token_id))
            if isinstance(tok, list):
                return tok[0] if len(tok) > 0 else ""
            return cast(str, tok)

        self.audio_user_slot_token = _id_to_token(
            self.model_config.audio_user_slot_token_id
        )
        self.audio_assistant_gen_slot_token = _id_to_token(
            self.model_config.audio_assistant_gen_slot_token_id
        )
        self.audio_assistant_delay_slot_token = _id_to_token(
            self.model_config.audio_assistant_delay_slot_token_id
        )
        self.audio_start_token = _id_to_token(self.model_config.audio_start_token_id)
        self.audio_end_token = _id_to_token(self.model_config.audio_end_token_id)

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path, *args, **kwargs):
        trust_remote_code = kwargs.pop("trust_remote_code", True)
        kwargs.pop("_from_auto", None)

        audio_tokenizer_name_or_path = kwargs.pop(
            "codec_path", "OpenMOSS-Team/MOSS-Audio-Tokenizer"
        )
        normalize_inputs = kwargs.pop("normalize_inputs", False)

        pretrained_model_name_or_path = Path(pretrained_model_name_or_path)
        model_config = cast(
            MossTTSDelayConfig,
            AutoConfig.from_pretrained(
                pretrained_model_name_or_path,
                *args,
                trust_remote_code=trust_remote_code,
                **kwargs,
            ),
        )
        tokenizer = AutoTokenizer.from_pretrained(
            pretrained_model_name_or_path,
            *args,
            trust_remote_code=trust_remote_code,
            **kwargs,
        )
        audio_tokenizer = AutoModel.from_pretrained(
            audio_tokenizer_name_or_path,
            trust_remote_code=trust_remote_code,
            **kwargs,
        )

        return cls(
            tokenizer=tokenizer,
            audio_tokenizer=audio_tokenizer,
            model_config=model_config,
            normalize_inputs=normalize_inputs,
            **kwargs,
        )

    def __call__(self, *args, **kwargs) -> BatchFeature:
        conversations = args[0] if len(args) > 0 else kwargs.pop("conversations")
        mode: str = kwargs.pop("mode", "generation")
        apply_chat_template: bool = kwargs.pop("apply_chat_template", True)
        n_vq: Optional[int] = kwargs.pop("n_vq", None)

        # Common ProcessorMixin kwargs that we ignore because we always return torch tensors.
        kwargs.pop("return_tensors", None)
        kwargs.pop("padding", None)
        kwargs.pop("truncation", None)

        """
        mode only works when a Message is converted to a dict.
        """

        if mode not in {"generation", "continuation"}:
            raise RuntimeError

        if isinstance(conversations, (Message, Dict)):
            conversations = [conversations]

        truncation = False
        if mode == "continuation":
            truncation = True

        input_ids_list = []
        for conversation in conversations:
            if isinstance(conversation, (Message, Dict)):
                conversation = [conversation]

            # Normalize early so downstream logic always deals with dict messages.
            conversation = [self._normalize_message(m) for m in conversation]

            if (mode == "generation") ^ (len(conversation) % 2 != 0):
                raise ValueError

            if (mode == "generation") ^ (conversation[-1]["role"] == "user"):
                raise ValueError

            unified_codes = []
            for message_idx, message in enumerate(conversation):
                if apply_chat_template:
                    add_generation_prompt = (
                        mode == "generation" and message_idx == len(conversation) - 1
                    )
                    try:
                        content = self.tokenizer.apply_chat_template(
                            [{"role": message["role"], "content": message["content"]}],
                            add_generation_prompt=add_generation_prompt,
                            tokenize=False,
                        )
                    except TypeError:
                        try:
                            content = self.tokenizer.apply_chat_template(
                                [
                                    {
                                        "role": message["role"],
                                        "content": message["content"],
                                    }
                                ],
                                add_generation_prompt=add_generation_prompt,
                            )
                        except Exception:
                            logger.warning(
                                "apply_chat_template failed; fallback to raw content."
                            )
                            content = message["content"]
                else:
                    content = message["content"]

                if not isinstance(content, str):
                    content = str(content)

                # Batch-encode all path-based references in one call when possible.
                # This ensures we actually exercise audio_tokenizer.batch_encode for multi-reference prompts,
                # instead of repeatedly calling it with batch=1.
                raw_audio_items = message.get("audio_codes_list", [])

                audio_codes_list: List[torch.Tensor] = []
                if len(raw_audio_items) > 0:
                    encoded_items: List[Optional[torch.Tensor]] = [None] * len(
                        raw_audio_items
                    )
                    paths: List[str] = []
                    path_positions: List[int] = []

                    for idx, item in enumerate(raw_audio_items):
                        if isinstance(item, torch.Tensor):
                            if n_vq is not None and item.shape[1] != n_vq:
                                raise RuntimeError(
                                    "audio_codes's n_vq is not equal to the parameter `n_vq`. Your can set the parameter `n_vq` as None if you have already tokenzied the wavs."
                                )
                            encoded_items[idx] = item
                            continue

                        if isinstance(item, (str, os.PathLike)):
                            paths.append(str(item))
                            path_positions.append(idx)
                            continue

                        raise TypeError(
                            "Each audio item must be a torch.Tensor of codes or a path-like string."
                        )

                    if len(paths) > 0:
                        encoded_from_paths = self.encode_audios_from_path(paths, n_vq)
                        if len(encoded_from_paths) != len(paths):
                            raise RuntimeError(
                                "encode_audios_from_path returned an unexpected number of items."
                            )
                        for pos, codes in zip(path_positions, encoded_from_paths):
                            encoded_items[pos] = codes

                    audio_codes_list = [cast(torch.Tensor, t) for t in encoded_items]
                unified_codes.append(
                    self._get_unified_codes(
                        message["role"], content, audio_codes_list, truncation
                    )
                )

            unified_codes = torch.cat(unified_codes)
            input_ids_list.append(unified_codes)

        return BatchFeature(data=self._pad(input_ids_list))

    @staticmethod
    def build_user_message(
        text: Optional[str] = None,
        reference: Optional[List[Optional[Union[str, torch.Tensor]]]] = None,
        instruction: Optional[str] = None,
        tokens: Optional[int] = None,
        quality: Optional[str] = None,
        sound_event: Optional[str] = None,
        ambient_sound: Optional[str] = None,
        language: Optional[str] = None,
        normalize: bool = False,
    ) -> Dict:
        if normalize:
            if text is not None:
                text = normalize_text(text)
            if instruction is not None:
                instruction = normalize_instruction(instruction)
        if reference is not None and not isinstance(reference, list):
            reference = [reference]
        return UserMessage(
            text=text,
            reference=reference,
            instruction=instruction,
            tokens=tokens,
            quality=quality,
            sound_event=sound_event,
            ambient_sound=ambient_sound,
            language=language,
        ).to_dict()

    @staticmethod
    def build_assistant_message(
        audio_codes_list: List[Union[str, torch.Tensor]],
        content: str = AUDIO_PLACEHOLDER,
    ) -> Dict:
        return AssistantMessage(
            audio_codes_list=audio_codes_list,
            content=content,
        ).to_dict()

    def _normalize_message(self, message: Union[Message, Dict]) -> Dict:
        if isinstance(message, Message):
            return message.to_dict()
        if not isinstance(message, dict):
            raise TypeError("Each message must be a Message or dict.")
        if "role" not in message:
            raise ValueError("Message dict must include a 'role' field.")
        if "content" in message and "audio_codes_list" in message:
            return message
        role = message["role"]
        if role == "user":
            kwargs = {key: message.get(key) for key in USER_MESSAGE_FIELDS}
            # 应用processor的全局normalize设置
            kwargs['normalize'] = self.normalize_inputs
            return self.build_user_message(**kwargs)
        if role == "assistant":
            return self.build_assistant_message(
                audio_codes_list=message.get("audio_codes_list", []),
                content=message.get("content", AUDIO_PLACEHOLDER),
            )
        raise ValueError(f"Unsupported role: {role}")

    def _pad(self, input_ids_list: List[torch.Tensor]):
        device = input_ids_list[0].device
        lengths = torch.tensor([w.shape[0] for w in input_ids_list], device=device)
        pad_input_ids = torch.nn.utils.rnn.pad_sequence(
            input_ids_list,
            batch_first=True,
            padding_value=self.model_config.audio_pad_code,
            padding_side="left",
        )
        other_channel_mask = (pad_input_ids.shape[1] - lengths).unsqueeze(
            1
        ) > torch.arange(pad_input_ids.shape[1], device=device).unsqueeze(0)
        pad_input_ids[..., 0][other_channel_mask] = self.model_config.pad_token_id
        attention_mask = torch.zeros(
            pad_input_ids.shape[0], pad_input_ids.shape[1], device=device
        )
        attention_mask[~other_channel_mask] = 1
        attention_mask = attention_mask.bool()
        return {
            "input_ids": pad_input_ids,  # [batch_size, seqlen, n_vq]
            "attention_mask": attention_mask,
        }

    @staticmethod
    def _replace_audio_placeholders(
        content: str,
        lengths: List[int],
        n_vq: int,
        gen_slot_token: str,
        delay_slot_token: str,
        audio_start_token: str,
        audio_end_token: str,
    ) -> str:
        if n_vq < 1:
            raise ValueError(f"n_vq must be >= 1, got {n_vq}")

        num_placeholders = content.count(AUDIO_PLACEHOLDER)
        if num_placeholders != len(lengths):
            raise ValueError(
                f"Number of {AUDIO_PLACEHOLDER} ({num_placeholders}) "
                f"does not match lengths ({len(lengths)})"
            )

        def build_audio_block(length: int) -> str:
            if length < 0:
                raise ValueError(f"length must be >= 0, got {length}")

            if length == 0:
                return f"{audio_start_token}{audio_end_token}"

            step_tokens = gen_slot_token * length + (delay_slot_token * (n_vq - 1))
            return f"{audio_start_token}{step_tokens}{audio_end_token}"

        lengths_iter = iter(lengths)

        def replacer(match: re.Match) -> str:
            length = next(lengths_iter)
            return build_audio_block(length)

        result = re.sub(re.escape(AUDIO_PLACEHOLDER), replacer, content)

        return result

    @staticmethod
    def _merge_consecutive_audio_placeholders(
        content: str,
        audio_codes_list: List[torch.Tensor],
    ) -> Tuple[str, List[torch.Tensor]]:
        matches = list(re.finditer(re.escape(AUDIO_PLACEHOLDER), content))
        if len(matches) <= 1:
            return content, audio_codes_list

        if len(matches) != len(audio_codes_list):
            raise ValueError(
                "Audio placeholders do not match the provided audio codes list."
            )

        new_audio_codes_list = []
        new_parts = []
        last_pos = 0
        i = 0
        while i < len(matches):
            j = i
            while (
                j + 1 < len(matches)
                and content[matches[j].end() : matches[j + 1].start()].strip() == ""
            ):
                j += 1

            new_parts.append(content[last_pos : matches[i].start()])
            new_parts.append(AUDIO_PLACEHOLDER)
            last_pos = matches[j].end()

            if j == i:
                new_audio_codes_list.append(audio_codes_list[i])
            else:
                new_audio_codes_list.append(
                    torch.cat(audio_codes_list[i : j + 1], dim=0)
                )

            i = j + 1

        new_parts.append(content[last_pos:])
        return "".join(new_parts), new_audio_codes_list

    @staticmethod
    def apply_delay_pattern(codes: torch.Tensor, pad_code: int) -> torch.Tensor:
        delayed_tokens = torch.full(
            (codes.shape[0] + codes.shape[1] - 1, codes.shape[1]),
            pad_code,
            device=codes.device,
            dtype=codes.dtype,
        )
        for i in range(codes.shape[1]):
            delayed_tokens[i : i + codes.shape[0], i] = codes[:, i]
        return delayed_tokens

    @staticmethod
    def apply_de_delay_pattern(delay_codes: torch.Tensor) -> torch.Tensor:
        tokens = torch.full(
            (delay_codes.shape[0] - delay_codes.shape[1] + 1, delay_codes.shape[1]),
            0,
            device=delay_codes.device,
            dtype=delay_codes.dtype,
        )
        for i in range(delay_codes.shape[1]):
            tokens[:, i] = delay_codes[i : i + tokens.shape[0], i]
        return tokens

    def _get_unified_codes(
        self,
        role: str,
        content: str,
        audio_codes_list: List[torch.Tensor],
        truncation: bool,
    ) -> torch.Tensor:
        """
        此时的 content 已经是带上了对话格式
        """
        if role == "user":
            audio_gen_slot_token = audio_delay_slot_token = self.audio_user_slot_token
            truncation = False
        else:
            audio_gen_slot_token = self.audio_assistant_gen_slot_token
            audio_delay_slot_token = self.audio_assistant_delay_slot_token

        if len(audio_codes_list):
            n_vq = audio_codes_list[0].shape[1]
        else:
            n_vq = self.model_config.n_vq

        if len(audio_codes_list) > 1 and AUDIO_PLACEHOLDER in content:
            content, audio_codes_list = self._merge_consecutive_audio_placeholders(
                content, audio_codes_list
            )
        content = self._replace_audio_placeholders(
            content=content,
            lengths=[len(audio_codes) for audio_codes in audio_codes_list],
            n_vq=n_vq,
            gen_slot_token=audio_gen_slot_token,
            delay_slot_token=audio_delay_slot_token,
            audio_start_token=self.audio_start_token,
            audio_end_token=self.audio_end_token,
        )
        text_codes = torch.tensor(
            self.tokenizer.encode(content),
            device=audio_codes_list[0].device if audio_codes_list else None,
        )

        audio_start_indices = torch.where(
            text_codes == self.model_config.audio_start_token_id
        )[0]
        audio_end_indices = torch.where(
            text_codes == self.model_config.audio_end_token_id
        )[0]
        if len(audio_start_indices) != len(audio_codes_list) or len(
            audio_end_indices
        ) != len(audio_codes_list):
            raise ValueError(
                "Audio placeholders do not match the provided audio codes list."
            )

        delay_audio_codes_list = []
        if len(audio_codes_list) == 0:
            delay_audio_codes_list = torch.full(
                (len(text_codes), n_vq),
                self.model_config.audio_pad_code,
                device=text_codes.device,
                dtype=text_codes.dtype,
            )
        else:
            prefix_idx = 0
            for audio_start_idx_t, audio_end_idx_t, audio_codes in zip(
                audio_start_indices, audio_end_indices, audio_codes_list
            ):
                audio_start_idx = int(audio_start_idx_t.item())
                audio_end_idx = int(audio_end_idx_t.item())
                delay_audio_codes = self.apply_delay_pattern(
                    audio_codes, self.model_config.audio_pad_code
                )
                pad_codes = torch.full(
                    (audio_start_idx - prefix_idx + 1, n_vq),
                    self.model_config.audio_pad_code,
                    device=audio_codes.device,
                    dtype=audio_codes.dtype,
                )
                delay_audio_codes_list.extend([pad_codes, delay_audio_codes])
                prefix_idx = audio_end_idx

            if truncation:
                delay_audio_codes_list[-1] = delay_audio_codes_list[-1][
                    : -(n_vq - 1), :
                ]
            else:
                last_audio_end_idx = int(audio_end_indices[-1].item())
                pad_codes = torch.full(
                    (len(text_codes) - last_audio_end_idx, n_vq),
                    self.model_config.audio_pad_code,
                    device=audio_codes_list[0].device,
                    dtype=audio_codes_list[0].dtype,
                )
                delay_audio_codes_list.append(pad_codes)

            delay_audio_codes_list = torch.cat(delay_audio_codes_list)

        if text_codes.shape[0] != delay_audio_codes_list.shape[0]:
            text_codes = text_codes[: delay_audio_codes_list.shape[0]]

        unified_codes = torch.cat(
            [text_codes.unsqueeze(1), delay_audio_codes_list], dim=1
        )
        return unified_codes

    def _parse_text_codes(self, start_length, text_codes):
        text = cast(str, self.tokenizer.decode(text_codes))
        prefix = cast(str, self.tokenizer.decode(text_codes[:start_length]))
        text = text[len(prefix) :]

        AUDIO_PATTERN = re.compile(
            rf"(?:{self.audio_start_token})?"
            rf"(?:{self.audio_assistant_gen_slot_token})*"
            rf"(?:{self.audio_assistant_delay_slot_token})*"
            rf"{self.audio_end_token}"
        )

        def normalize_audio_segments(text: str) -> str:
            def repl(match: re.Match) -> str:
                seg = match.group(0)
                # Replace with <|audio|> if gen_slot is present in the segment;
                if self.audio_assistant_gen_slot_token in seg:
                    return AUDIO_PLACEHOLDER
                # Otherwise, remove it.
                return ""

            return AUDIO_PATTERN.sub(repl, text)

        return normalize_audio_segments(text)

    def _parse_audio_codes(self, start_length, audio_codes):
        # De-delay back to [T', n_vq]
        audio_codes = self.apply_de_delay_pattern(audio_codes)

        # Rows that are all pad are separators between real audio segments.
        is_pad = (audio_codes == self.model_config.audio_pad_code).all(dim=1)
        non_pad = ~is_pad
        if not non_pad.any():
            return []

        idx = torch.nonzero(non_pad).squeeze(1)
        breaks = torch.where(idx[1:] != idx[:-1] + 1)[0] + 1
        if breaks.numel() == 0:
            segments_idx = [idx]
        else:
            segments_idx = torch.split(idx, breaks.tolist())

        audio_codes_list = [audio_codes[s] for s in segments_idx]

        # Batch-decode all audio segments together.
        decoded_audio_list = self.decode_audio_codes(audio_codes_list)

        # Keep codec causal context by decoding the whole first segment first,
        # then trim at waveform level according to start_length ratio.
        if (
            start_length > 0
            and len(audio_codes_list) > 0
            and len(decoded_audio_list) > 0
        ):
            first_codes_length = audio_codes_list[0].shape[0]
            if first_codes_length > 0:
                trim_ratio = max(
                    0.0, min(float(start_length) / float(first_codes_length), 1.0)
                )
                first_audio = decoded_audio_list[0]
                if trim_ratio >= 1.0:
                    decoded_audio_list = decoded_audio_list[1:]
                elif trim_ratio > 0.0:
                    trim_samples = int(first_audio.shape[-1] * trim_ratio)
                    decoded_audio_list[0] = first_audio[..., trim_samples:]

        return decoded_audio_list

    def decode(self, output: List[Tuple[int, torch.Tensor]]):
        """
        1. 这里不管怎样,都需要一个完整的 assistant generation ids;
        2. 支持从任意位置进行截断;
        """

        genearted_messages = []
        for start_length, generation_ids in output:
            content = self._parse_text_codes(start_length, generation_ids[:, 0])
            audio_codes_list = self._parse_audio_codes(
                start_length, generation_ids[:, 1:]
            )
            if content == "":
                message = None
            else:
                message = AssistantMessage(
                    content=content,
                    audio_codes_list=cast(
                        List[Union[str, torch.Tensor]], audio_codes_list
                    ),
                )
            genearted_messages.append(message)
        return genearted_messages

    @staticmethod
    def loudness_normalize(
        wav: torch.Tensor,
        target_dbfs: float = -20,
        gain_range: tuple[float, float] = (-3.0, 3.0),
    ) -> torch.Tensor:
        wav = wav.to(torch.float32)
        if wav.numel() == 0:
            return wav
        current_dbfs = 10.0 * torch.log10(torch.mean(wav**2) + 1e-9)
        gain = float(target_dbfs - current_dbfs)
        gain = max(gain_range[0], min(gain, gain_range[1]))
        factor = 10.0 ** (gain / 20.0)
        return wav * factor

    def _get_audio_tokenizer_device(self) -> torch.device:
        """Best-effort device inference for `self.audio_tokenizer`.

        Notes:
        - Old TAC wrapper exposed `.device`, but standard `torch.nn.Module` does not.
        - New MossAudioTokenizerModel is a `PreTrainedModel`; parameters define its device.
        """

        audio_tokenizer = getattr(self, "audio_tokenizer", None)
        if audio_tokenizer is None:
            logger.warning(
                "audio_tokenizer is not set on processor. Using CPU as default."
            )
            return torch.device("cpu")

        device_attr = getattr(audio_tokenizer, "device", None)
        if isinstance(device_attr, torch.device):
            return device_attr

        try:
            return next(audio_tokenizer.parameters()).device
        except StopIteration:
            # No parameters (shouldn't happen for real models); default to CPU.
            logger.warning(
                "No parameters found on audio_tokenizer. Using CPU as default."
            )
            return torch.device("cpu")

    def encode_audios_from_wav(
        self,
        wav_list: List[torch.Tensor],
        sampling_rate: int,
        n_vq: Optional[int] = None,
    ):
        if self.audio_tokenizer is None:
            raise RuntimeError("audio_tokenizer is not set on processor.")
        audio_tokenizer = self.audio_tokenizer

        if isinstance(wav_list, torch.Tensor):
            wav_list = [wav_list]
        wav_list_ = []
        resample = False
        if sampling_rate != self.model_config.sampling_rate:
            resample = True
        device = self._get_audio_tokenizer_device()
        for wav in wav_list:
            if wav.shape[0] > 1:
                wav = torch.mean(wav, dim=0, keepdim=True)
            if resample:
                wav = torchaudio.functional.resample(
                    waveform=wav,
                    orig_freq=sampling_rate,
                    new_freq=self.model_config.sampling_rate,
                )
            wav = wav.to(device)
            wav_list_.append(self.loudness_normalize(wav.squeeze(0)))

        # New MossAudioTokenizerModel API: prefer batch_encode(list[wav])
        if hasattr(audio_tokenizer, "batch_encode"):
            enc = audio_tokenizer.batch_encode(wav_list_, num_quantizers=n_vq)
            audio_codes = enc.audio_codes  # (NQ, B, T)
            audio_codes_lengths = enc.audio_codes_lengths  # (B,)
        else:
            # Fallback: use encode() with explicit padding.
            max_len = max(int(wav.shape[-1]) for wav in wav_list_)
            input_values = torch.zeros(
                len(wav_list_), 1, max_len, device=device, dtype=torch.float32
            )
            padding_mask = torch.zeros(
                len(wav_list_), max_len, device=device, dtype=torch.bool
            )
            for i, wav in enumerate(wav_list_):
                this_len = int(wav.shape[-1])
                input_values[i, 0, :this_len] = wav
                padding_mask[i, :this_len] = True
            enc = audio_tokenizer.encode(
                input_values,
                padding_mask=padding_mask,
                num_quantizers=n_vq,
                return_dict=True,
            )
            audio_codes = enc.audio_codes
            audio_codes_lengths = enc.audio_codes_lengths

        if audio_codes is None or audio_codes_lengths is None:
            raise RuntimeError(
                "audio_tokenizer.encode() returned empty outputs (audio_codes/audio_codes_lengths)."
            )

        # Keep processor's historical contract: list[Tensor] with shape (T, NQ)
        # and on CPU (so downstream text/audio packing remains device-agnostic).
        codes_list: List[torch.Tensor] = []
        for i in range(int(audio_codes.shape[1])):
            length_i = int(audio_codes_lengths[i].item())
            codes_i = (
                audio_codes[:, i, :length_i]
                .transpose(0, 1)
                .contiguous()
                .to(torch.long)
                .cpu()
            )
            codes_list.append(codes_i)
        return codes_list

    def encode_audios_from_path(
        self, wav_path_list: Union[str, List[str]], n_vq: Optional[int] = None
    ):
        if isinstance(wav_path_list, str):
            wav_path_list = [wav_path_list]

        if len(wav_path_list) == 0:
            raise ValueError("Empty wav_path_list")

        # Load + (if needed) resample each wav independently, so callers can
        # pass a heterogeneous batch of files while still benefiting from
        # audio_tokenizer.batch_encode.
        target_sr = int(self.model_config.sampling_rate)
        wav_list: List[torch.Tensor] = []
        for wav_path in wav_path_list:
            wav, sr = torchaudio.load(wav_path)
            if int(sr) != target_sr:
                wav = torchaudio.functional.resample(
                    waveform=wav,
                    orig_freq=int(sr),
                    new_freq=target_sr,
                )
            wav_list.append(wav)

        return self.encode_audios_from_wav(wav_list, target_sr, n_vq)

    def decode_audio_codes(
        self, audio_tokens_list: Union[torch.Tensor, List[torch.Tensor]]
    ):
        if self.audio_tokenizer is None:
            raise RuntimeError("audio_tokenizer is not set on processor.")
        audio_tokenizer = self.audio_tokenizer

        if isinstance(audio_tokens_list, torch.Tensor):
            audio_tokens_list = [audio_tokens_list]
        if len(audio_tokens_list) == 0:
            return []

        device = self._get_audio_tokenizer_device()

        # Processor uses (T, NQ); MossAudioTokenizer expects (NQ, T) (or (NQ, B, T)).
        codes_list = [
            codes.transpose(0, 1).contiguous().to(device=device, dtype=torch.long)
            for codes in audio_tokens_list
        ]
    
        # Fallback: pad to (NQ, B, T) + mask, then decode.
        nq = int(codes_list[0].shape[0])
        max_t = max(int(c.shape[1]) for c in codes_list)
        audio_codes = torch.zeros(
            nq, len(codes_list), max_t, device=device, dtype=torch.long
        )
        padding_mask = torch.zeros(
            len(codes_list), max_t, device=device, dtype=torch.bool
        )
        for i, c in enumerate(codes_list):
            t = int(c.shape[1])
            audio_codes[:, i, :t] = c
            padding_mask[i, :t] = True
        dec = audio_tokenizer.decode(
            audio_codes, padding_mask=padding_mask, return_dict=True, chunk_duration=8
        )
        audio = dec.audio
        audio_lengths = dec.audio_lengths

        if audio is None or audio_lengths is None:
            raise RuntimeError(
                "audio_tokenizer.decode() returned empty outputs (audio/audio_lengths)."
            )

        # Return historical contract: list of 1D waveforms (T,)
        wav_list: List[torch.Tensor] = []
        for i in range(int(audio.shape[0])):
            length_i = int(audio_lengths[i].item())
            wav = audio[i, 0, :length_i].contiguous().to(torch.float32).cpu()
            wav_list.append(wav)
        return wav_list