File size: 12,865 Bytes
e43edbb 8f68d0a e43edbb e054d0c e43edbb e054d0c e43edbb |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 |
#!/usr/bin/env python3
"""
Pipeline 包装脚本
此脚本作为独立子进程运行,执行 TrainingPipeline 并将进度以 JSON 格式输出到 stdout。
主进程(AsyncTrainingManager)通过解析 stdout 来获取实时进度。
进度消息格式:
##PROGRESS##{"type": "progress", "stage": "...", ...}##
Usage:
python run_pipeline.py --config /path/to/config.json --task-id task-123
"""
import argparse
import json
import sys
import os
import traceback
from datetime import datetime
from typing import Dict, Any
# 确保可以导入项目模块(在导入其他模块之前)
from pathlib import Path
_SCRIPT_DIR = Path(__file__).parent.resolve()
_API_SERVER_ROOT = _SCRIPT_DIR.parent.parent
_PROJECT_ROOT = _API_SERVER_ROOT.parent
sys.path.insert(0, str(_PROJECT_ROOT))
# 导入配置模块
from project_config import settings, PROJECT_ROOT, get_pythonpath
# 进度消息前缀和后缀,用于主进程解析
PROGRESS_PREFIX = "##PROGRESS##"
PROGRESS_SUFFIX = "##"
def emit_progress(progress_info: Dict[str, Any]) -> None:
"""
输出进度消息到 stdout
Args:
progress_info: 进度信息字典
"""
# 确保有时间戳
if "timestamp" not in progress_info:
progress_info["timestamp"] = datetime.utcnow().isoformat()
json_str = json.dumps(progress_info, ensure_ascii=False)
print(f"{PROGRESS_PREFIX}{json_str}{PROGRESS_SUFFIX}", flush=True)
def emit_log(level: str, message: str, **extra) -> None:
"""
输出日志消息
Args:
level: 日志级别 (info, warning, error)
message: 日志消息
**extra: 额外数据
"""
emit_progress({
"type": "log",
"level": level,
"message": message,
**extra
})
def load_config(config_path: str) -> Dict[str, Any]:
"""
加载配置文件
Args:
config_path: 配置文件路径
Returns:
配置字典
"""
with open(config_path, 'r', encoding='utf-8') as f:
return json.load(f)
def build_pipeline(config: Dict[str, Any]):
"""
根据配置构建 TrainingPipeline
Args:
config: 配置字典,包含:
- exp_name: 实验名称
- version: 模型版本
- stages: 要执行的阶段列表
- 各阶段的具体配置
Returns:
TrainingPipeline 实例
"""
from training_pipeline import (
TrainingPipeline,
ModelVersion,
# 配置类
AudioSliceConfig,
ASRConfig,
DenoiseConfig,
FeatureExtractionConfig,
SoVITSTrainConfig,
GPTTrainConfig,
InferenceConfig,
# 阶段类
AudioSliceStage,
ASRStage,
DenoiseStage,
TextFeatureStage,
HuBERTFeatureStage,
SemanticTokenStage,
SoVITSTrainStage,
GPTTrainStage,
InferenceStage,
)
pipeline = TrainingPipeline()
exp_name = config["exp_name"]
version_str = config.get("version", "v2")
version = ModelVersion(version_str) if isinstance(version_str, str) else version_str
# 通用配置参数
base_params = {
"exp_name": exp_name,
"exp_root": config.get("exp_root", "logs"),
"gpu_numbers": config.get("gpu_numbers", "0"),
"is_half": config.get("is_half", True),
}
# 阶段配置映射
stage_builders = {
"audio_slice": lambda cfg: AudioSliceStage(AudioSliceConfig(
**base_params,
input_path=cfg.get("input_path", ""),
threshold=cfg.get("threshold", -34),
min_length=cfg.get("min_length", 4000),
min_interval=cfg.get("min_interval", 300),
hop_size=cfg.get("hop_size", 10),
max_sil_kept=cfg.get("max_sil_kept", 500),
max_amp=cfg.get("max_amp", 0.9),
alpha=cfg.get("alpha", 0.25),
n_parts=cfg.get("n_parts", 4),
)),
"asr": lambda cfg: ASRStage(ASRConfig(
**base_params,
model=cfg.get("model", "达摩 ASR (中文)"),
model_size=cfg.get("model_size", "large"),
language=cfg.get("language", "zh"),
precision=cfg.get("precision", "float32"),
)),
"denoise": lambda cfg: DenoiseStage(DenoiseConfig(
**base_params,
input_dir=cfg.get("input_dir", ""),
output_dir=cfg.get("output_dir", "output/denoise_opt"),
)),
"text_feature": lambda cfg: TextFeatureStage(FeatureExtractionConfig(
**base_params,
version=version,
bert_pretrained_dir=cfg.get("bert_pretrained_dir",
"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"),
ssl_pretrained_dir=cfg.get("ssl_pretrained_dir",
"GPT_SoVITS/pretrained_models/chinese-hubert-base"),
pretrained_s2G=cfg.get("pretrained_s2G",
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"),
)),
"hubert_feature": lambda cfg: HuBERTFeatureStage(FeatureExtractionConfig(
**base_params,
version=version,
bert_pretrained_dir=cfg.get("bert_pretrained_dir",
"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"),
ssl_pretrained_dir=cfg.get("ssl_pretrained_dir",
"GPT_SoVITS/pretrained_models/chinese-hubert-base"),
pretrained_s2G=cfg.get("pretrained_s2G",
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"),
)),
"semantic_token": lambda cfg: SemanticTokenStage(FeatureExtractionConfig(
**base_params,
version=version,
bert_pretrained_dir=cfg.get("bert_pretrained_dir",
"GPT_SoVITS/pretrained_models/chinese-roberta-wwm-ext-large"),
ssl_pretrained_dir=cfg.get("ssl_pretrained_dir",
"GPT_SoVITS/pretrained_models/chinese-hubert-base"),
pretrained_s2G=cfg.get("pretrained_s2G",
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"),
)),
"sovits_train": lambda cfg: SoVITSTrainStage(SoVITSTrainConfig(
**base_params,
version=version,
batch_size=cfg.get("batch_size", 4),
total_epoch=cfg.get("total_epoch", 8),
text_low_lr_rate=cfg.get("text_low_lr_rate", 0.4),
save_every_epoch=cfg.get("save_every_epoch", 4),
if_save_latest=cfg.get("if_save_latest", True),
if_save_every_weights=cfg.get("if_save_every_weights", True),
pretrained_s2G=cfg.get("pretrained_s2G",
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2G2333k.pth"),
pretrained_s2D=cfg.get("pretrained_s2D",
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s2D2333k.pth"),
if_grad_ckpt=cfg.get("if_grad_ckpt", False),
lora_rank=cfg.get("lora_rank", 32),
)),
"gpt_train": lambda cfg: GPTTrainStage(GPTTrainConfig(
**base_params,
version=version,
batch_size=cfg.get("batch_size", 4),
total_epoch=cfg.get("total_epoch", 15),
save_every_epoch=cfg.get("save_every_epoch", 5),
if_save_latest=cfg.get("if_save_latest", True),
if_save_every_weights=cfg.get("if_save_every_weights", True),
if_dpo=cfg.get("if_dpo", False),
pretrained_s1=cfg.get("pretrained_s1",
"GPT_SoVITS/pretrained_models/gsv-v2final-pretrained/s1bert25hz-5kh-longer-epoch=12-step=369668.ckpt"),
)),
"inference": lambda cfg: InferenceStage(InferenceConfig(
**base_params,
version=version,
gpt_path=cfg.get("gpt_path", ""),
sovits_path=cfg.get("sovits_path", ""),
ref_text=cfg.get("ref_text", ""),
ref_audio_path=cfg.get("ref_audio_path", ""),
target_text=cfg.get("target_text", ""),
text_split_method=cfg.get("text_split_method", "cut1"),
)),
}
# 按顺序添加阶段
# stages 可以是:
# 1. 字符串列表: ["audio_slice", "asr", ...]
# 2. 字典列表: [{"type": "audio_slice", "threshold": -30}, ...]
stages = config.get("stages", [])
for stage_item in stages:
# 判断是字符串还是字典
if isinstance(stage_item, str):
stage_type = stage_item
stage_config = config # 使用全局配置作为阶段配置
elif isinstance(stage_item, dict):
stage_type = stage_item.get("type")
# 合并全局配置和阶段特定配置
stage_config = {**config, **stage_item}
else:
emit_log("warning", f"无效的阶段配置类型: {type(stage_item)}")
continue
if stage_type in stage_builders:
stage = stage_builders[stage_type](stage_config)
pipeline.add_stage(stage)
emit_log("info", f"已添加阶段: {stage.name}")
else:
emit_log("warning", f"未知阶段类型: {stage_type}")
return pipeline
def run_pipeline(config: Dict[str, Any], task_id: str) -> bool:
"""
执行 Pipeline
Args:
config: 配置字典
task_id: 任务ID
Returns:
是否成功完成
"""
emit_progress({
"type": "progress",
"status": "running",
"message": "正在初始化训练流水线...",
"task_id": task_id,
"progress": 0.0,
"overall_progress": 0.0,
})
try:
pipeline = build_pipeline(config)
stages = pipeline.get_stages()
if not stages:
emit_progress({
"type": "progress",
"status": "failed",
"message": "没有配置任何训练阶段",
"task_id": task_id,
})
return False
emit_log("info", f"训练流水线已初始化,共 {len(stages)} 个阶段")
# 执行 Pipeline
for progress in pipeline.run():
# 转换进度格式
emit_progress({
"type": "progress",
"status": "running",
"stage": progress.get("stage"),
"stage_index": progress.get("stage_index"),
"total_stages": progress.get("total_stages"),
"progress": progress.get("progress", 0.0),
"overall_progress": progress.get("overall_progress", 0.0),
"message": progress.get("message"),
"task_id": task_id,
"data": progress.get("data", {}),
})
# 检查是否失败
if progress.get("status") == "failed":
emit_progress({
"type": "progress",
"status": "failed",
"stage": progress.get("stage"),
"message": progress.get("message", "阶段执行失败"),
"task_id": task_id,
})
return False
# 完成
emit_progress({
"type": "progress",
"status": "completed",
"message": "训练流水线执行完成",
"task_id": task_id,
"progress": 1.0,
"overall_progress": 1.0,
})
return True
except Exception as e:
error_msg = str(e)
error_trace = traceback.format_exc()
emit_progress({
"type": "progress",
"status": "failed",
"message": f"执行出错: {error_msg}",
"error": error_msg,
"traceback": error_trace,
"task_id": task_id,
})
return False
def main():
"""主函数"""
parser = argparse.ArgumentParser(description="执行 GPT-SoVITS 训练流水线")
parser.add_argument("--config", required=True, help="配置文件路径 (JSON)")
parser.add_argument("--task-id", required=True, help="任务ID")
args = parser.parse_args()
emit_log("info", f"启动训练任务: {args.task_id}")
emit_log("info", f"配置文件: {args.config}")
try:
config = load_config(args.config)
except Exception as e:
emit_progress({
"type": "progress",
"status": "failed",
"message": f"加载配置文件失败: {e}",
"task_id": args.task_id,
})
sys.exit(1)
success = run_pipeline(config, args.task_id)
sys.exit(0 if success else 1)
if __name__ == "__main__":
main()
|