import logging import PIL from transformers.image_utils import ChannelDimension from src.model.baseline_backbone.colpali import ColPaliProcessor logger = logging.getLogger(__name__) import torch import numpy as np from src.utils import print_master from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM from src.model.vlm_backbone.qwen2_vl_gp import Qwen2VLForConditionalGeneration_GP, Qwen2VLProcessor from src.model.vlm_backbone.qwen2_5_vl_gp import Qwen2_5_VLForConditionalGeneration_GP, Qwen2_5_VL_GP_Processor from src.model.vlm_backbone.qwen2_vl_layer_prune import Qwen2VLForConditionalGeneration_LayerPrune, Qwen2VLProcessor from src.model.vlm_backbone.qwen2_vl import Qwen2VLForConditionalGeneration, Qwen2VLProcessor from src.model.vlm_backbone.qwen2_vl_tokenselection import \ Qwen2VLForConditionalGeneration as Qwen2VLTokenSelectionForConditionalGeneration, \ Qwen2VLProcessor as Qwen2VLTokenSelectionProcessor from src.model.baseline_backbone.internvideo2.modeling_internvideo2 import InternVideo2_Stage2 from src.model.vlm_backbone.qwen2_5_vl import Qwen2_5_VLForConditionalGeneration from src.model.vlm_backbone.qwen2_5_vl_tokenselection import \ Qwen2_5_VLForConditionalGeneration as Qwen2_5_VL_TokenSelectionForConditionalGeneration from qwen_vl_utils import process_vision_info PHI_IMAGE_TOKEN_MAX_INPUT_ID = int(1e9) LLAVA_IMAGE_TOKEN_ID = 32000 PHI3V = 'phi3_v' LLAVA_NEXT = 'llava_next' QWEN2_VL_GP = 'qwen2_vl_gp' QWEN2_5_VL_GP = 'qwen2_5_vl_gp' QWEN2_VL_LayerPrune = 'qwen2_vl_layerprune' QWEN2_VL = 'qwen2_vl' QWEN2_VL_TOKENSELECTION = 'qwen2_vl' QWEN2_5_VL = 'qwen2_5_vl' QWEN2_VL_TOKENSELECTION = 'qwen2_vl_tokenselection' QWEN2_5_VL_TOKENSELECTION = 'qwen2_5_vl_tokenselection' INTERNVIDEO2 = 'internvideo2' GME = 'gme' # QWEN2-VL LamRA = 'lamra' # QWEN2-VL LamRA_QWEN2_5 = 'lamra_qwen25' # QWEN2.5-VL COLPALI = 'colpali' # PaliGemma-3B E5_V = 'e5_v' # Llava_next MODEL2BACKBONE = { # keys are from hf_config.model_type or manually added if not provided 'phi3_v': PHI3V, 'llava_next': LLAVA_NEXT, 'qwen2_vl_gp': QWEN2_VL_GP, 'qwen2_5_vl_gp': QWEN2_5_VL_GP, 'qwen2_vl_layerprune': QWEN2_VL_LayerPrune, 'qwen2_vl': QWEN2_VL, 'qwen2_vl_tokenselection': QWEN2_VL, 'qwen2_5_vl': QWEN2_5_VL, 'qwen2_vl_tokenselection': QWEN2_VL_TOKENSELECTION, 'qwen2_5_vl_tokenselection': QWEN2_5_VL_TOKENSELECTION, 'internvideo2': INTERNVIDEO2, 'gme': GME, 'lamra': LamRA, 'lamra_qwen25': LamRA, 'colpali': COLPALI, 'e5_v': E5_V, } SUPPORTED_MODELS = set(MODEL2BACKBONE.keys()) VLM_IMAGE_TOKENS = { PHI3V: "<|image_1|>", LLAVA_NEXT: "", QWEN2_VL_GP: "<|image_pad|>", QWEN2_5_VL_GP: "<|image_pad|>", QWEN2_VL_LayerPrune: "<|image_pad|>", QWEN2_VL: "<|image_pad|>", QWEN2_5_VL: "<|image_pad|>", QWEN2_VL_TOKENSELECTION: "<|image_pad|>", QWEN2_5_VL_TOKENSELECTION: "<|image_pad|>", GME: "<|image_pad|>", LamRA: "<|image_pad|>", LamRA_QWEN2_5: "<|image_pad|>", INTERNVIDEO2: "", COLPALI: "", E5_V: "", } VLM_VIDEO_TOKENS = { LLAVA_NEXT: "", QWEN2_VL_GP: "<|video_pad|>", QWEN2_5_VL_GP: "<|video_pad|>", QWEN2_VL_LayerPrune: "<|video_pad|>", QWEN2_VL: "<|video_pad|>", QWEN2_5_VL: "<|video_pad|>", QWEN2_VL_TOKENSELECTION: "<|video_pad|>", QWEN2_5_VL_TOKENSELECTION: "<|video_pad|>", GME: "<|video_pad|>", LamRA: "<|video_pad|>", LamRA_QWEN2_5: "<|video_pad|>", INTERNVIDEO2: "", COLPALI: "", E5_V: "", } backbone2model = { PHI3V: Phi3VForCausalLM, LLAVA_NEXT: LlavaNextForConditionalGeneration, QWEN2_VL_GP: Qwen2VLForConditionalGeneration_GP, QWEN2_5_VL_GP: Qwen2_5_VLForConditionalGeneration_GP, "QWEN2_VL_LayerPrune": Qwen2VLForConditionalGeneration_LayerPrune, QWEN2_VL: Qwen2VLForConditionalGeneration, QWEN2_5_VL: Qwen2_5_VLForConditionalGeneration, QWEN2_VL_TOKENSELECTION: Qwen2VLTokenSelectionForConditionalGeneration, QWEN2_5_VL_TOKENSELECTION: Qwen2_5_VL_TokenSelectionForConditionalGeneration, INTERNVIDEO2: InternVideo2_Stage2, E5_V: LlavaNextForConditionalGeneration, } def load_processor(model_args, data_args=None): """ Load processor based on VLM backbone. Note: due to this change, https://github.com/huggingface/transformers/commit/9215cc62d4366072aacafa4e44028c1ca187167b#diff-6505546ec5a9ab74b2ce6511681dd31194eb91e9fa3ce26282e487a5e61f9356L1102 """ model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name print_master(f'Loading processor from: {model_name_or_path}') if model_args.model_backbone == PHI3V: from src.model.baseline_backbone.phi3_v.processing_phi3_v import Phi3VProcessor processor = Phi3VProcessor.from_pretrained( model_name_or_path, trust_remote_code=True, num_crops=model_args.num_crops ) processor.tokenizer.padding_side = "right" elif model_args.model_backbone == LLAVA_NEXT: from src.model.baseline_backbone.llava_next import LlavaNextProcessor processor = LlavaNextProcessor.from_pretrained( model_name_or_path, trust_remote_code=True ) elif model_args.model_backbone in [QWEN2_VL, GME, LamRA]: from src.model.vlm_backbone.qwen2_vl.processing_qwen2_vl import Qwen2VLProcessor from src.model.vlm_backbone.qwen2_vl.image_processing_qwen2_vl import Qwen2VLImageProcessor from src.model.vlm_backbone.qwen2_vl.tokenization_qwen2_fast import Qwen2TokenizerFast min_pixels, max_pixels = None, None if data_args is not None: min_pixels, max_pixels = data_args.resize_min_pixels, data_args.resize_max_pixels size = {"shortest_edge": min_pixels, "longest_edge": max_pixels} image_processor = Qwen2VLImageProcessor.from_pretrained(model_name_or_path, size=size) tokenizer = Qwen2TokenizerFast.from_pretrained(model_name_or_path) processor = Qwen2VLProcessor.from_pretrained( model_name_or_path, image_processor=image_processor, tokenizer=tokenizer, size=size ) elif model_args.model_backbone == QWEN2_VL_TOKENSELECTION: from src.model.vlm_backbone.qwen2_vl_tokenselection.processing_qwen2_vl import Qwen2VLProcessor from src.model.vlm_backbone.qwen2_vl_tokenselection.image_processing_qwen2_vl import Qwen2VLImageProcessor from src.model.vlm_backbone.qwen2_vl_tokenselection.tokenization_qwen2_fast import Qwen2TokenizerFast min_pixels, max_pixels = None, None if data_args is not None: min_pixels, max_pixels = data_args.resize_min_pixels, data_args.resize_max_pixels size = {"shortest_edge": min_pixels, "longest_edge": max_pixels} image_processor = Qwen2VLImageProcessor.from_pretrained(model_name_or_path, size=size) if data_args is not None: image_processor.do_resize = data_args.resize_use_processor image_processor.min_pixels = data_args.resize_min_pixels image_processor.max_pixels = data_args.resize_max_pixels tokenizer = Qwen2TokenizerFast.from_pretrained(model_name_or_path) processor = Qwen2VLProcessor.from_pretrained( model_name_or_path, image_processor=image_processor, tokenizer=tokenizer, size=size, uigraph_use=model_args.uigraph_use, uigraph_diff=model_args.uigraph_diff, uigraph_rand=model_args.uigraph_rand, uimask_ratio=model_args.uimask_ratio, uimask_rand=model_args.uimask_rand ) elif model_args.model_backbone in [QWEN2_5_VL, LamRA_QWEN2_5]: from src.model.vlm_backbone.qwen2_5_vl.processing_qwen2_5_vl import Qwen2_5_VLProcessor from src.model.vlm_backbone.qwen2_5_vl.image_processing_qwen2_5_vl import Qwen2_5_VLImageProcessor from src.model.vlm_backbone.qwen2_vl.tokenization_qwen2_fast import Qwen2TokenizerFast min_pixels, max_pixels = None, None if data_args is not None: min_pixels, max_pixels = data_args.resize_min_pixels, data_args.resize_max_pixels size = {"shortest_edge": min_pixels, "longest_edge": max_pixels, "min_pixels": min_pixels, "max_pixels": max_pixels} image_processor = Qwen2_5_VLImageProcessor.from_pretrained(model_name_or_path, size=size) tokenizer = Qwen2TokenizerFast.from_pretrained(model_name_or_path) processor = Qwen2_5_VLProcessor.from_pretrained(model_name_or_path, image_processor=image_processor, tokenizer=tokenizer) # elif model_args.model_backbone in [QWEN2_5_VL_GP]: # from src.model.vlm_backbone.qwen2_5_vl_gp.processing_qwen2_5_vl import Qwen2_5_VLProcessor # from src.model.vlm_backbone.qwen2_5_vl_gp.image_processing_qwen2_5_vl import Qwen2_5_VLImageProcessor # from src.model.vlm_backbone.qwen2_vl.tokenization_qwen2_fast import Qwen2TokenizerFast # min_pixels, max_pixels = None, None # if data_args is not None: # min_pixels, max_pixels = data_args.resize_min_pixels, data_args.resize_max_pixels # size = {"shortest_edge": min_pixels, "longest_edge": max_pixels, "min_pixels": min_pixels, "max_pixels": max_pixels} # image_processor = Qwen2_5_VLImageProcessor.from_pretrained(model_name_or_path, size=size) # tokenizer = Qwen2TokenizerFast.from_pretrained(model_name_or_path) # processor = Qwen2_5_VLProcessor.from_pretrained(model_name_or_path, image_processor=image_processor, tokenizer=tokenizer) # processor.tokenizer.padding_side = "left" elif model_args.model_backbone in [QWEN2_5_VL_GP]: # 使用 GP 专用 Processor(支持 normed_bboxes -> ref_token_masks) max_pixels = getattr(data_args, "resize_max_pixels", 12845056) if data_args is not None else 12845056 processor = Qwen2_5_VL_GP_Processor.from_pretrained( model_name_or_path, max_pixels=max_pixels, ) # tokenizer 补丁:eos/pad/左对齐(与 GP 训练假设一致) tok = processor.tokenizer if not hasattr(tok, "eos_token_id") or tok.eos_token_id is None: tok.eos_token_id = tok.convert_tokens_to_ids(tok.eos_token) if getattr(tok, "pad_token_id", None) is None: tok.pad_token_id = tok.eos_token_id tok.padding_side = "left" # 对齐你现有的缩放参数(若存在) if data_args is not None: try: processor.image_processor.do_resize = data_args.resize_use_processor processor.image_processor.min_pixels = data_args.resize_min_pixels processor.image_processor.max_pixels = data_args.resize_max_pixels size = { "shortest_edge": data_args.resize_min_pixels, "longest_edge": data_args.resize_max_pixels, "min_pixels": data_args.resize_min_pixels, "max_pixels": data_args.resize_max_pixels, } if hasattr(processor.image_processor, "size"): processor.image_processor.size = size except Exception as e: print_master(f"[warn] set resize fields on GP image_processor failed: {e}") elif model_args.model_backbone in [QWEN2_VL_GP]: from src.model.vlm_backbone.qwen2_vl_gp.processing_qwen2_vl import Qwen2VLProcessor from src.model.vlm_backbone.qwen2_vl_gp.image_processing_qwen2_vl import Qwen2VLImageProcessor from src.model.vlm_backbone.qwen2_vl_gp.tokenization_qwen2_fast import Qwen2TokenizerFast min_pixels, max_pixels = None, None if data_args is not None: min_pixels, max_pixels = data_args.resize_min_pixels, data_args.resize_max_pixels size = {"shortest_edge": min_pixels, "longest_edge": max_pixels} image_processor = Qwen2VLImageProcessor.from_pretrained(model_name_or_path, size=size) tokenizer = Qwen2TokenizerFast.from_pretrained(model_name_or_path) processor = Qwen2VLProcessor.from_pretrained( model_name_or_path, image_processor=image_processor, tokenizer=tokenizer, size=size ) processor.tokenizer.padding_side = "left" elif model_args.model_backbone == QWEN2_5_VL_TOKENSELECTION: # TODO: qwen2.5 token selection not working yet from src.model.vlm_backbone.qwen2_5_vl_tokenselection.processing_qwen2_5_vl import Qwen2_5_VLProcessor from src.model.vlm_backbone.qwen2_5_vl_tokenselection.image_processing_qwen2_5_vl import Qwen2_5_VLImageProcessor from src.model.vlm_backbone.qwen2_vl_tokenselection.tokenization_qwen2_fast import Qwen2TokenizerFast min_pixels, max_pixels = None, None if data_args is not None: min_pixels, max_pixels = data_args.resize_min_pixels, data_args.resize_max_pixels size = {"shortest_edge": min_pixels, "longest_edge": max_pixels, "min_pixels": min_pixels, "max_pixels": max_pixels} image_processor = Qwen2_5_VLImageProcessor.from_pretrained(model_name_or_path, size=size) tokenizer = Qwen2TokenizerFast.from_pretrained(model_name_or_path) processor = Qwen2_5_VLProcessor.from_pretrained( model_name_or_path, image_processor=image_processor, tokenizer=tokenizer, uigraph_use=model_args.uigraph_use, uigraph_diff=model_args.uigraph_diff, uigraph_rand=model_args.uigraph_rand, uimask_ratio=model_args.uimask_ratio, uimask_rand=model_args.uimask_rand ) elif model_args.model_backbone == INTERNVIDEO2: return None elif model_args.model_backbone == COLPALI: from transformers import AutoProcessor processor = ColPaliProcessor.from_pretrained(model_args.model_name) else: from transformers import AutoProcessor processor = AutoProcessor.from_pretrained( model_args.processor_name if model_args.processor_name else model_args.model_name, trust_remote_code=True, ) return processor def get_backbone_name(hf_config, model_type=None): if model_type is not None: setattr(hf_config, 'model_type', model_type) assert hf_config.model_type in SUPPORTED_MODELS, f"Unknown backbone name {hf_config.model_type}.Supported models are {SUPPORTED_MODELS}" return MODEL2BACKBONE[hf_config.model_type] def Llava_NEXT_process_fn(model_inputs: dict, processor, max_length=None): # TODO: NOT FINISHED YET! input_ids, pixel_values, image_sizes = [], [], [] texts, visual_inputs = model_inputs['text'], model_inputs['images'] image_exists = False # 1. iterate each pair and process (since processors do not support batch processing) for text, images in zip(texts, visual_inputs): # in theory, each batch item should contain a list of frames, but we still check for exceptions here # if no images as input (not likely to happen in mmeb pro cases) if images is None or (type(images)==list and any(i is None for i in images)): inputs = processor(images=None, text=text, return_tensors="np", max_length=max_length, truncation=True) input_id = inputs["input_ids"].squeeze().tolist() if isinstance(input_id, int): # in case of empty string, only BOS is included input_id = [input_id] input_ids.append(input_id) pixel_values.append(None) image_sizes.append(None) else: image_exists = True # in theory, valid images should be a list of frames assert isinstance(images, list), f"images should be a list, but got {type(images)}" inputs = processor(images=images, text=text, return_tensors="np", max_length=max_length, truncation=True) input_ids.append(inputs["input_ids"].squeeze().tolist()) pixel_values.append(inputs['pixel_values']) image_sizes.append(inputs['image_sizes']) # 2. padding inputs batch_encoding = processor.tokenizer.pad({'input_ids': input_ids}, return_tensors="pt") input_ids, attention_mask = batch_encoding['input_ids'], batch_encoding['attention_mask'] inputs = { 'input_ids': input_ids.long(), 'attention_mask': attention_mask, # 'texts': texts, # 'images': visual_inputs, } image_exists = any([p is not None for p in pixel_values]) if image_exists: pixel_values = torch.from_numpy(np.array(pixel_values)).float() pixel_values_shape = pixel_values.shape pixel_values = pixel_values.reshape(pixel_values_shape[0] * pixel_values_shape[1], *pixel_values_shape[2:]) image_sizes = torch.tensor(np.array(image_sizes)).long() image_sizes_shape = image_sizes.shape image_sizes = image_sizes.reshape(image_sizes_shape[0] * image_sizes_shape[1], *image_sizes_shape[2:]) inputs['pixel_values'] = torch.from_numpy(np.array(pixel_values)).float() inputs['image_sizes'] = torch.tensor(np.array(image_sizes)).long() else: inputs['pixel_values'] = torch.zeros(input_ids.shape[0], 1) inputs['image_sizes'] = torch.ones(input_ids.shape[0], 1) return inputs def Phi3V_process_fn(model_inputs: dict, processor, max_length=None): input_ids, pixel_values, image_sizes, image_grid_thw = [], [], [], [] texts, images = model_inputs['text'], model_inputs['images'] image_exists = False # 1. iterate each pair and process (since processors do not support batch processing) for text, image in zip(texts, images): if image is None: inputs = processor(text, None, return_tensors="np", max_length=max_length, truncation=True) input_id = inputs["input_ids"].squeeze().tolist() if isinstance(input_id, int): # in case of empty string, only BOS is included input_id = [input_id] input_ids.append(input_id) pixel_values.append(None) image_sizes.append(None) image_grid_thw.append(None) else: image_exists = True inputs = processor(text=text, images=[image], return_tensors="np", max_length=max_length, truncation=True) input_ids.append(inputs["input_ids"].squeeze().tolist()) pixel_values.append(inputs['pixel_values']) if 'image_sizes' in inputs: image_sizes.append(inputs['image_sizes']) if 'image_grid_thw' in inputs: image_grid_thw.append(inputs['image_grid_thw']) # 2. padding inputs batch_encoding = processor.tokenizer.pad({'input_ids': input_ids}, return_tensors="pt") input_ids, attention_mask = batch_encoding['input_ids'], batch_encoding['attention_mask'] inputs = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'texts': texts, 'images': images, } # 3. special postcare for mixed batch (examples w/ and w/o images in the same batch) if image_exists: # add them to inputs inputs['pixel_values'] = pixel_values inputs['image_sizes'] = image_sizes else: inputs['pixel_values'] = torch.zeros(input_ids.shape[0], 1) inputs['image_sizes'] = torch.ones(input_ids.shape[0], 1) return inputs def Qwen2_VL_process_fn(model_inputs: dict, processor: Qwen2VLProcessor, max_length=None): # TODO: set separate max_len for text/visual inputs, currently max_length is only applied to text-only data input_ids, pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw = [], [], [], [], [] texts, visual_inputs = model_inputs['text'], model_inputs['images'] image_exists = False vlm_image_token, vlm_video_token = VLM_IMAGE_TOKENS[QWEN2_VL], VLM_VIDEO_TOKENS[QWEN2_VL] # 1. iterate each pair and process, since processors do not support processing for mixed batch (contains data w/ and w/o visual inputs) for text, images in zip(texts, visual_inputs): if images is None or (type(images)==list and any(i is None for i in images)): # all images must be valid inputs = processor(text=[text], images=None, return_tensors="np", max_length=max_length, truncation=True) input_id = inputs["input_ids"].squeeze().tolist() if isinstance(input_id, int): # in case of empty string, only BOS is included input_id = [input_id] input_ids.append(input_id) pixel_values.append(None) image_grid_thw.append(None) pixel_values_videos.append(None) video_grid_thw.append(None) else: try: if vlm_image_token in text: if isinstance(images, PIL.Image.Image): # images is a single image images = [images] for iid, image in enumerate(images): # rare case in MMEB eval: resize to 28*28 if either w or h is smaller than 28 if image.size[0] < 28 or image.size[1] < 28: image = image.resize((56, 56)) images[iid] = image inputs = processor(text=[text], images=images, return_tensors="np", max_length=None, truncation=False, input_data_format=ChannelDimension.LAST) elif vlm_video_token in text: # TODO: check text/video data validity inputs = processor(text=[text], videos=[images], return_tensors="np", max_length=None, truncation=False, input_data_format=ChannelDimension.LAST) else: raise NotImplementedError(f"No visual token found ({vlm_image_token} or {vlm_video_token}) in the text: {text}") except Exception as e: for i in images: print(i.filename) raise e input_ids.append(inputs["input_ids"].squeeze().tolist()) if 'pixel_values' in inputs: pixel_values.append(inputs['pixel_values']) image_grid_thw.append(inputs['image_grid_thw']) pixel_values_videos.append(None) video_grid_thw.append(None) else: pixel_values.append(None) image_grid_thw.append(None) pixel_values_videos.append(inputs['pixel_values_videos']) video_grid_thw.append(inputs['video_grid_thw']) # 2. padding inputs batch_encoding = processor.tokenizer.pad({'input_ids': input_ids}, return_tensors="pt") input_ids, attention_mask = batch_encoding['input_ids'], batch_encoding['attention_mask'] # manually enforce long type due to: # (1) [rank7]: RuntimeError: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.FloatTensor instead (while checking arguments for embedding) # (2) [rank7]: File "/fsx/home/ruimeng/project/VLM2Vec/src/model.py", line 45, in _pooling # [rank7]: reps = last_hidden_state[ # [rank7]: IndexError: tensors used as indices must be long, int, byte or bool tensors inputs = { 'input_ids': input_ids.long(), 'attention_mask': attention_mask.long(), 'texts': texts, 'images': visual_inputs, } inputs['pixel_values'] = pixel_values inputs['image_grid_thw'] = image_grid_thw inputs['pixel_values_videos'] = pixel_values_videos inputs['video_grid_thw'] = video_grid_thw return inputs def Gme_process_fn(model_inputs: dict, processor: Qwen2VLProcessor, max_length=None): inputs = { 'texts': model_inputs['text'], 'images': model_inputs['images'], } return inputs def Qwen2_VL_TokenSelection_process_fn(model_inputs: dict, processor: Qwen2VLTokenSelectionProcessor, max_length=None): # TODO: set separate max_len for text/visual inputs, currently max_length is only applied to text-only data input_ids, pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw = [], [], [], [], [] patch_pos, select_mask = [], [] texts, visual_inputs = model_inputs['text'], model_inputs['images'] image_exists = False # 1. iterate each pair and process (since processors do not support batch processing) for text, images in zip(texts, visual_inputs): if images is None or (type(images)==list and any(i is None for i in images)): # all images must be valid inputs = processor(text=[text], images=None, return_tensors="np", max_length=max_length, truncation=True) input_id = inputs["input_ids"].squeeze().tolist() if isinstance(input_id, int): # in case of empty string, only BOS is included input_id = [input_id] input_ids.append(input_id) pixel_values.append(None) image_grid_thw.append(None) patch_pos.append(None) select_mask.append(None) pixel_values_videos.append(None) video_grid_thw.append(None) else: image_exists = True # TODO only # handling multi-image data from videos, cannot deal with mixed image + video data if VLM_IMAGE_TOKENS[QWEN2_VL] in text: inputs = processor(text=[text], images=[images], return_tensors="np", max_length=None, truncation=False, input_data_format=ChannelDimension.LAST) elif VLM_VIDEO_TOKENS[QWEN2_VL] in text: assert len(images) > 1, f"Video data must have more than 1 frame, got {len(images)}" inputs = processor(text=[text], videos=[images], return_tensors="np", max_length=None, truncation=False, input_data_format=ChannelDimension.LAST) else: raise NotImplementedError(f"Unsupported visual token in text: {text}") input_ids.append(inputs["input_ids"].squeeze().tolist()) if 'pixel_values' in inputs: pixel_values.append(inputs['pixel_values']) image_grid_thw.append(inputs['image_grid_thw']) pixel_values_videos.append(None) video_grid_thw.append(None) if 'patch_pos' in inputs: patch_pos.append(inputs['patch_pos']) if 'select_mask' in inputs: select_mask.append(inputs['select_mask']) else: pixel_values.append(None) image_grid_thw.append(None) patch_pos.append(None) select_mask.append(None) pixel_values_videos.append(inputs['pixel_values_videos']) video_grid_thw.append(inputs['video_grid_thw']) # 2. padding inputs batch_encoding = processor.tokenizer.pad({'input_ids': input_ids}, return_tensors="pt") input_ids, attention_mask = batch_encoding['input_ids'], batch_encoding['attention_mask'] if image_exists: if patch_pos: patch_pos_shape_for_padding = list(v.shape for v in patch_pos if v is not None)[0] key_tmp = [torch.from_numpy(v) if v is not None else (torch.zeros(patch_pos_shape_for_padding) - 1) for v in patch_pos] max_length = input_ids.size(1) padded_key = [torch.nn.functional.pad(pos, (0, max_length - pos.size(1)), value=-1) for pos in key_tmp] patch_pos = torch.cat(padded_key, dim=0) if select_mask: select_mask_shape_for_padding = list(v.shape for v in select_mask if v is not None)[0] key_tmp = [torch.from_numpy(v) if v is not None else torch.ones(select_mask_shape_for_padding).bool() for v in select_mask] max_length = input_ids.size(1) padded_key = [torch.nn.functional.pad(pos, (0, max_length - pos.size(1)), value=True) for pos in key_tmp] select_mask = torch.cat(padded_key, dim=0) # manually enforce long type due to: # (1) [rank7]: RuntimeError: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.FloatTensor instead (while checking arguments for embedding) # (2) [rank7]: File "/fsx/home/ruimeng/project/VLM2Vec/src/model.py", line 45, in _pooling # [rank7]: reps = last_hidden_state[ # [rank7]: IndexError: tensors used as indices must be long, int, byte or bool tensors inputs = { 'input_ids': input_ids.long(), 'attention_mask': attention_mask.long() } inputs['pixel_values'] = pixel_values inputs['image_grid_thw'] = image_grid_thw inputs['pixel_values_videos'] = pixel_values_videos inputs['video_grid_thw'] = video_grid_thw inputs['patch_pos'] = patch_pos inputs['select_mask'] = select_mask return inputs def _strip_image_tokens_from_text(txt: str, model_backbone: str) -> str: if not isinstance(txt, str): return "" img_tok = VLM_IMAGE_TOKENS.get(model_backbone, None) vid_tok = VLM_VIDEO_TOKENS.get(model_backbone, None) if img_tok and img_tok in txt: txt = txt.replace(img_tok, "").strip() if vid_tok and vid_tok in txt: txt = txt.replace(vid_tok, "").strip() return txt def Qwen2_5_VL_GP_chat_process_fn(model_inputs: dict, processor, max_length=None): """ 支持输入: model_inputs = {'text': [str], 'images': [List[PIL] or None], 'bboxes': Optional[List[List[xyxy]]]} 行为: - 构造 chat messages: [{"role":"user","content":[{"type":"image","image":...}, {"type":"text","text":...}]}] - 归一化 bbox(如果有);若无则 [[0,0,1,1]] - processor(..., normed_bboxes=...) -> 返回 ref_token_masks """ texts = model_inputs["text"] images_batch = model_inputs["images"] bboxes_batch = model_inputs.get("bboxes", None) messages, normed_bboxes, image_counts = [], [], [] for i, (txt, imgs) in enumerate(zip(texts, images_batch)): txt = _strip_image_tokens_from_text(txt, QWEN2_5_VL_GP) content = [] if imgs is not None: assert isinstance(imgs, list), f"Expect a list of PIL images, got {type(imgs)}" for im in imgs: content.append({"type": "image", "image": im}) image_counts.append(len(imgs)) else: image_counts.append(0) content.append({"type": "text", "text": txt}) messages.append([{"role": "user", "content": content}]) if bboxes_batch is not None and bboxes_batch[i] and imgs is not None and len(imgs) > 0: W, H = imgs[0].size nb = [] for (x1, y1, x2, y2) in bboxes_batch[i]: nb.append([x1 / W, y1 / H, x2 / W, y2 / H]) normed_bboxes.append(nb) else: normed_bboxes.append([[0.0, 0.0, 1.0, 1.0]]) text_inputs = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=False) image_inputs, video_inputs = process_vision_info(messages) out = processor( text=text_inputs, images=image_inputs, videos=video_inputs, normed_bboxes=normed_bboxes, padding=True, return_tensors="pt", ) out["texts"] = texts out["images"] = images_batch out["image_counts"] = torch.tensor(image_counts, dtype=torch.long) # 新增 merge_len = 1 try: merge_len = int(getattr(processor.image_processor, "merge_size", 1)) ** 2 except Exception: pass out["image_counts"] = torch.tensor(image_counts, dtype=torch.long) # 每样本图片数 [B] out["merge_length"] = torch.tensor(merge_len, dtype=torch.long) # 常量(窗口除数) return out def InternVL_process_fn(model_inputs: dict, processor, max_length=None): # TODO not working yet input_ids, pixel_values, image_sizes, image_grid_thw = [], [], [], [] texts, images = model_inputs['text'], model_inputs['images'] image_exists = False # 1. iterate each pair and process (since processors do not support batch processing) for text, image in zip(texts, images): if image is None: inputs = processor(text, None, return_tensors="np", max_length=max_length, truncation=True) input_id = inputs["input_ids"].squeeze().tolist() if isinstance(input_id, int): # in case of empty string, only BOS is included input_id = [input_id] input_ids.append(input_id) pixel_values.append(None) image_sizes.append(None) image_grid_thw.append(None) else: image_exists = True inputs = processor(text=text, images=[image], return_tensors="np", max_length=max_length, truncation=True) input_ids.append(inputs["input_ids"].squeeze().tolist()) pixel_values.append(inputs['pixel_values']) if 'image_sizes' in inputs: image_sizes.append(inputs['image_sizes']) if 'image_grid_thw' in inputs: image_grid_thw.append(inputs['image_grid_thw']) # 2. padding inputs batch_encoding = processor.tokenizer.pad({'input_ids': input_ids}, return_tensors="pt") input_ids, attention_mask = batch_encoding['input_ids'], batch_encoding['attention_mask'] inputs = { 'input_ids': input_ids, 'attention_mask': attention_mask, 'texts': texts, 'images': images, } # 3. special postcare for mixed batch (examples w/ and w/o images in the same batch) if image_exists: # add them to inputs inputs['pixel_values'] = pixel_values inputs['image_sizes'] = image_sizes else: inputs['pixel_values'] = torch.zeros(input_ids.shape[0], 1) inputs['image_sizes'] = torch.ones(input_ids.shape[0], 1) return inputs def ColPali_process_fn(model_inputs: dict, processor, max_length=None): texts, images = model_inputs['text'], model_inputs['images'] if images is None or all(i is None for i in images): inputs = processor.process_queries(texts) else: inputs = processor.process_images(images) return inputs def InternVideo2_process_fn(model_inputs: dict, processor, max_length=None): if all(x is None for x in model_inputs["images"]): # Text side from src.model.baseline_backbone.internvideo2.modeling_internvideo2 import BertTokenizer tokenizer = BertTokenizer.from_pretrained("bert-large-uncased") inputs = tokenizer( model_inputs["text"], padding="max_length", truncation=True, max_length=40, return_tensors="pt") else: # Video side from torchvision import transforms preprocess = transforms.Compose([ transforms.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img), transforms.Resize((224, 224)), # Resize to 224x224 transforms.ToTensor(), # Convert from PIL image to tensor (C, H, W) transforms.Normalize(mean=[0.485, 0.456, 0.406], # ImageNet mean std=[0.229, 0.224, 0.225]) # ImageNet std ]) frame_list = model_inputs["images"] # to make image inputs be exact 4 frames # Case 1: frame_list is flat (not a list of lists), e.g., [PIL, PIL, ...] if type(frame_list[0]) is not list: frame_list = [[img.copy() for _ in range(4)] for img in frame_list] # Case 2: frame_list is already a list of lists, ensure each has exactly 4 images elif type(frame_list[0]) is list and len(frame_list[0]) != 4: new_list = [] for frames in frame_list: if len(frames) < 4: frames = frames + [frames[-1].copy() for _ in range(4 - len(frames))] elif len(frames) > 4: # Sample 4 indices uniformly across the sequence indices = np.linspace(0, len(frames) - 1, num=4, dtype=int) frames = [frames[i] for i in indices] new_list.append(frames) frame_list = new_list pixel_values = [ torch.stack([preprocess(img) for img in frames], dim=0) # (num_frames, C, H, W) for frames in frame_list ] pixel_values = torch.stack(pixel_values, dim=0) # (B, num_frames, C, H, W) inputs = {'pixel_values': pixel_values} return inputs def e5_v_prompt_template(text, add_video_token, add_image_token): llama3_template = '<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n \n' if text is not None and add_video_token is False and add_image_token is False: # only text prompt = llama3_template.format('{}\nSummary above sentence in one word: '.format(text)) if text is None and add_video_token: # only video prompt = llama3_template.format('\nSummary above video in one word: ') if text is None and add_image_token: # only image prompt = llama3_template.format('\nSummary above image in one word: ') if text is not None and add_video_token: # video + text prompt = llama3_template.format('\n{}\nSummary above video and text in one word: '.format(text)) if text is not None and add_image_token: prompt = llama3_template.format('\n{}\nSummary above image and text in one word: '.format(text)) return prompt PROMPT_TEMPLATE_DICT = { "e5_v": e5_v_prompt_template, } def process_input_text(instruction, model_backbone, text=None, add_video_token=False, add_image_token=False): # Formulate input text based on text, special token and instruction. # TBD: Reorganize the hard-code part for baselines such as internvideo2 if model_backbone == "internvideo2": return text elif model_backbone in [GME, LamRA, LamRA_QWEN2_5]: if text: return instruction + " " + text # GME and LamRA do not need special tokens else: return instruction + " " elif model_backbone == E5_V: return PROMPT_TEMPLATE_DICT[model_backbone](text, add_video_token, add_image_token) prompt = instruction if text: prompt = prompt + " " + text if add_video_token: video_token = VLM_VIDEO_TOKENS[model_backbone] prompt = video_token + " " + prompt if add_image_token: image_token = VLM_IMAGE_TOKENS[model_backbone] prompt = image_token + " " + prompt return prompt process_vlm_inputs_fns = { PHI3V: Phi3V_process_fn, LLAVA_NEXT: Llava_NEXT_process_fn, QWEN2_VL_GP: Qwen2_VL_process_fn, QWEN2_5_VL_GP: Qwen2_VL_process_fn, QWEN2_VL_LayerPrune: Qwen2_VL_process_fn, QWEN2_VL: Qwen2_VL_process_fn, QWEN2_5_VL: Qwen2_VL_process_fn, QWEN2_VL_TOKENSELECTION: Qwen2_VL_TokenSelection_process_fn, QWEN2_5_VL_TOKENSELECTION: Qwen2_VL_TokenSelection_process_fn, INTERNVIDEO2: InternVideo2_process_fn, GME: Gme_process_fn, LamRA: Gme_process_fn, LamRA_QWEN2_5: Gme_process_fn, COLPALI: ColPali_process_fn, E5_V: Llava_NEXT_process_fn, }