from typing import Dict import torch import torch.distributed as dist from torch import nn, Tensor import torch.nn.functional as F # 如果文件顶部没引入的话 from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig from peft import LoraConfig, get_peft_model, PeftModel from src.model.processor import QWEN2_5_VL_TOKENSELECTION from src.arguments_multi_layer import ModelArguments, TrainingArguments from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, \ backbone2model, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, INTERNVIDEO2, \ QWEN2_VL_TOKENSELECTION, backbone2model, GME, VLM_IMAGE_TOKENS, LamRA, LamRA_QWEN2_5, COLPALI from src.model.baseline_backbone.colpali import ColPali from src.model.baseline_backbone.gme.gme_inference import GmeQwen2VL from src.model.baseline_backbone.lamra.lamra_inference import LamRAQwen2VL from src.model.baseline_backbone.lamra.lamra_qwen25_inference import LamRAQwen25VL from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration from transformers import modeling_utils if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None: modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", 'rowwise'] class MMEBModel(nn.Module): TRANSFORMER_CLS = AutoModelForCausalLM def __init__(self, encoder: PreTrainedModel, pooling: str = 'last', normalize: bool = False, temperature: float = 0.02, ): super().__init__() self.config = encoder.config self.encoder = encoder self.pooling = pooling self.normalize = normalize self.temperature = temperature self.cross_entropy = nn.CrossEntropyLoss(reduction='mean') self.is_ddp = dist.is_initialized() if self.is_ddp: self.process_rank = dist.get_rank() self.world_size = dist.get_world_size() self.layer_indices = [20, -1] self.supervise_layers = [20, -1] # -1 必须表示最后一层 self.supervise_weights = [0.15, 0.85] # 与 supervise_layers 对齐 @property def device(self): # 尽量稳妥地拿到设备 try: return next(self.encoder.parameters()).device except StopIteration: try: return next(self.parameters()).device except StopIteration: return torch.device("cpu") def _has_image(self, batch_input): """ 基于输入是否包含像素张量来判断是否含图像。 True:存在 'pixel_values' 且非None且元素数>0;或存在 'images'(部分backbone) False:否则 """ B = None if 'attention_mask' in batch_input: B = batch_input['attention_mask'].shape[0] elif 'input_ids' in batch_input: B = batch_input['input_ids'].shape[0] has_img = False if 'pixel_values' in batch_input and batch_input['pixel_values'] is not None: # pixel_values 形状可能是 [B, ...] 或 [B, 1, ...] pv = batch_input['pixel_values'] has_img = pv.numel() > 0 if B is None: B = pv.shape[0] elif 'images' in batch_input and batch_input['images'] is not None: has_img = True # 列表/占位,视为包含图像 if B is None: # 兜底:看作不含图像 return torch.zeros(1, dtype=torch.float32, device=self.encoder.device) val = 1.0 if has_img else 0.0 return torch.full((B,), fill_value=val, dtype=torch.float32, device=self.encoder.device) @staticmethod def _masked_mean(loss_vec: Tensor, weight_mask: Tensor) -> Tensor: denom = torch.clamp(weight_mask.sum(), min=1.0) return (loss_vec * weight_mask).sum() / denom def _normalize_layers(self, hs_len: int, layers: list[int]) -> list[int]: Lmax = hs_len - 1 out = [] for idx in layers: if idx < 0: idx = hs_len + idx idx = max(1, min(idx, Lmax)) out.append(idx) if (hs_len - 1) not in out: out.append(hs_len - 1) return out def _encode_multi(self, input): """ 通用多层编码:返回 [B, K, D],K=len(self.supervise_layers,经规范化且包含最后一层)。 """ mb = getattr(self, "model_backbone", None) def norm(x): return F.normalize(x, p=2, dim=-1) if self.normalize else x # 支持 hidden_states 的通用分支 if mb not in [GME, LamRA, LamRA_QWEN2_5, INTERNVIDEO2, COLPALI]: out = self.encoder(**input, return_dict=True, output_hidden_states=True) hs = out.hidden_states # list/tuple, len = L+1 idxs = self._normalize_layers(len(hs), list(dict.fromkeys(self.supervise_layers))) # 去重保序 reps = [] for idx in idxs: r = self._pooling(hs[idx], input['attention_mask']) reps.append(norm(r)) return torch.stack(reps, dim=1) # [B, K, D] # LLAVA_NEXT:仍可拿 hidden_states if mb == LLAVA_NEXT: input = dict(input) input['pixel_values'] = input['pixel_values'].squeeze(dim=1) input['image_sizes'] = input['image_sizes'].squeeze(dim=1) out = self.encoder(**input, return_dict=True, output_hidden_states=True) hs = out.hidden_states idxs = self._normalize_layers(len(hs), list(dict.fromkeys(self.supervise_layers))) reps = [] for idx in idxs: r = self._pooling(hs[idx], input['attention_mask']) reps.append(norm(r)) return torch.stack(reps, dim=1) # 其他不支持 hidden_states 的backbone:退化为重复最后一层 last = self.encode_input(input) # [B, D] last = norm(last) K = len(self.supervise_layers) return torch.stack([last for _ in range(K)], dim=1) # [B, K, D] # def encode_input(self, input): def encode_input(self, input, layer_indices=None): if getattr(self, "model_backbone", None) == INTERNVIDEO2: if "input_ids" in input.keys(): # text side text_output = self.encoder.get_text_encoder()( input["input_ids"], attention_mask=input["attention_mask"], return_dict=True, mode="text", ) text_embeds = text_output.last_hidden_state pooled_text_embeds = text_embeds[:, 0] pooled_output = self.encoder.text_proj(pooled_text_embeds) pooled_output /= pooled_output.norm(dim=-1, keepdim=True) return pooled_output else: _, vfeat = self.encoder.encode_vision(input["pixel_values"], test=True) vfeat = self.encoder.vision_proj(vfeat) vfeat /= vfeat.norm(dim=-1, keepdim=True) return vfeat elif getattr(self, "model_backbone", None) in [GME, LamRA, LamRA_QWEN2_5]: # pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True) texts = [text.replace(VLM_IMAGE_TOKENS[QWEN2_VL] + '\n', '') for text in input["texts"]] # we are actually passing video queries so this should not happen images = [] for imgs in input['images']: # if multi images are given, select the middle frame only if isinstance(imgs, list): imgs = imgs[len(imgs) // 2] assert not isinstance(imgs, list) # make sure we have extracted the middle frame and it is no longer a list images.append(imgs) else: images.append(imgs) pooled_output = self.encoder.get_fused_embeddings(texts=texts, images=images) return pooled_output elif getattr(self, "model_backbone", None) == COLPALI: pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True) return pooled_output elif getattr(self, "model_backbone", None) == LLAVA_NEXT: input['pixel_values'] = input['pixel_values'].squeeze(dim=1) input['image_sizes'] = input['image_sizes'].squeeze(dim=1) hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True) hidden_states = hidden_states.hidden_states[-1] pooled_output = self._pooling(hidden_states, input['attention_mask']) return pooled_output else: # 默认HF模型:支持 hidden_states out = self.encoder(**input, return_dict=True, output_hidden_states=True) hs_list = out.hidden_states if layer_indices is None or isinstance(layer_indices, int): h = hs_list[-1] if layer_indices is None else hs_list[layer_indices] reps = self._pooling(h, input['attention_mask']) return reps else: reps_list = [] for idx in layer_indices: h = hs_list[idx] r = self._pooling(h, input['attention_mask']) reps_list.append(r) reps = torch.stack(reps_list, dim=1) # [B, L, D] return reps def _pooling(self, last_hidden_state, attention_mask): if self.pooling == 'last' or self.pooling == 'eos': left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0]) batch_size = last_hidden_state.shape[0] if left_padding: # Get the vectors at the last position reps = last_hidden_state[torch.arange(batch_size), -1, :] else: # Calculate last 1 position in the original tensor eos_indices = attention_mask.sum(dim=1) - 1 # Get the vectors at the last 1 position of each attention mask reps = last_hidden_state[ torch.arange(batch_size, device=last_hidden_state.device), eos_indices] else: raise NotImplementedError if self.normalize: reps = torch.nn.functional.normalize(reps, p=2, dim=-1) return reps @classmethod def build(cls, model_args: ModelArguments, **kwargs): config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) variant = getattr(config, "backbone_variant", None) if variant == "layerprune": model_backbone = "QWEN2_VL_LayerPrune" else: model_backbone = get_backbone_name(hf_config=config) print_master(f'Loading backbone [{model_backbone}] from {model_args.model_name}') # Loading the base model if model_backbone == PHI3V: config._attn_implementation = "eager" config.padding_side = "right" config.use_cache = False base_model = Phi3VForCausalLM.from_pretrained( model_args.model_name, config=config, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, ) elif model_backbone == LLAVA_NEXT: config.use_cache = False config.padding_side = "left" base_model = LlavaNextForConditionalGeneration.from_pretrained( model_args.model_name, config=config, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, ) elif model_backbone in [QWEN2_VL, QWEN2_5_VL]: config._attn_implementation = "flash_attention_2" config.padding_side = "left" config.use_cache = False base_model = backbone2model[model_backbone].from_pretrained( model_args.model_name, config=config, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, ) elif model_backbone in ["QWEN2_VL_LayerPrune"]: config._attn_implementation = "flash_attention_2" config.padding_side = "left" config.use_cache = False base_model = backbone2model[model_backbone].from_pretrained( model_args.model_name, config=config, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, ) elif model_backbone in [QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION]: config._attn_implementation = "flash_attention_2" config.padding_side = "left" config.use_cache = False from .utils import parse_layer_type lm_qwen_layer = 28 vis_qwen_layer = 32 lm_skip_layer = parse_layer_type(model_args.lm_skip_layer, lm_qwen_layer) vis_skip_layer = parse_layer_type(model_args.vis_skip_layer, vis_qwen_layer) base_model = backbone2model[model_backbone].from_pretrained( model_args.model_name, config=config, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, lm_skip_layer=lm_skip_layer, vis_skip_layer=vis_skip_layer, ) else: config.use_cache = False base_model = cls.TRANSFORMER_CLS.from_pretrained( model_args.model_name, **kwargs, config=config, attn_implementation="flash_attention_2", torch_dtype=torch.bfloat16, trust_remote_code=True) if model_args.lora: print_master(f'Loading lora adapter from {base_model}') lora_config = LoraConfig( r=model_args.lora_r, lora_alpha=model_args.lora_alpha, target_modules=model_args.lora_target_modules.split(','), lora_dropout=model_args.lora_dropout, init_lora_weights="gaussian", use_dora=True, inference_mode=False ) lora_model = get_peft_model(base_model, lora_config) model = cls( encoder=lora_model, pooling=model_args.pooling, normalize=model_args.normalize, temperature=model_args.temperature ) else: model = cls( encoder=base_model, pooling=model_args.pooling, normalize=model_args.normalize, temperature=model_args.temperature ) # 在 build(...) 末尾(return model 前)添加 def _parse_list(val, tp=float): if val is None: return None if isinstance(val, (list, tuple)): return [tp(x) for x in val] s = str(val).strip() if s == "": return None return [tp(v.strip()) for v in s.split(",") if v.strip() != ""] layers = _parse_list(getattr(model_args, "supervise_layers", None), tp=int) weights = _parse_list(getattr(model_args, "supervise_weights", None), tp=float) if layers is None: # fallback 到旧的二层设置 layers = [getattr(model_args, 'dual_layer_idx', 20), -1] if -1 not in layers: layers = list(layers) + [-1] # 强制包含最后一层 if weights is None or len(weights) != len(layers): # 若未提供或长度不匹配,则做一个合理默认:最后一层占大头 K = len(layers) base = [1.0/(K-1)]*(K-1) if K>1 else [1.0] weights = base + [max(0.0, 1.0 - sum(base))] # 归一化 s = sum(max(0.0, w) for w in weights) weights = [max(0.0, w)/s for w in weights] setattr(model, 'supervise_layers', layers) setattr(model, 'supervise_weights', weights) # 新增:读取门控与蒸馏超参 setattr(model, 'gate_by_image', getattr(model_args, 'gate_by_image', True)) setattr(model, 'misalign_mid_ce', float(getattr(model_args, 'misalign_mid_ce', 0.0))) setattr(model, 'distill_beta', float(getattr(model_args, 'distill_beta', 1.0))) setattr(model, 'distill_on_aligned', bool(getattr(model_args, 'distill_on_aligned', False))) return model @classmethod def load(cls, model_args: ModelArguments, is_trainable=True, **kwargs): # Loading the base model model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True) if not hasattr(model_args, "model_backbone") or not model_args.model_backbone: model_backbone = get_backbone_name(hf_config=config, model_type=model_args.model_type) setattr(model_args, 'model_backbone', model_backbone) print_master(f'Loading backbone [{model_args.model_backbone}] from {model_name_or_path}') if model_args.model_backbone in {LLAVA_NEXT, QWEN2_VL, QWEN2_5_VL, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V}: config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) config._attn_implementation = "flash_attention_2" config.vision_config._attn_implementation = "flash_attention_2" base_model = backbone2model[model_args.model_backbone].from_pretrained( model_args.model_name, torch_dtype=torch.bfloat16, low_cpu_mem_usage=True, config=config ) elif model_args.model_backbone == PHI3V: config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) config.use_cache = False config.padding_side = "right" base_model = Phi3VForCausalLM.from_pretrained(model_args.model_name, **kwargs, config=config, torch_dtype=torch.bfloat16, trust_remote_code=True) base_model.padding_side = "right" elif model_args.model_backbone == INTERNVIDEO2: print_master(f'Loading backbone [{model_args.model_backbone}] from {"src/model/vlm_backbone/internvideo2/"}') config = AutoConfig.from_pretrained("src/model/vlm_backbone/internvideo2/", trust_remote_code=True) base_model = backbone2model[model_args.model_backbone].from_pretrained("src/model/vlm_backbone/internvideo2/", config=config, trust_remote_code=True) elif model_args.model_backbone == GME: base_model = GmeQwen2VL(model_args.model_name, processor=kwargs['processor']) setattr(base_model, 'config', config) elif model_args.model_backbone == LamRA: base_model = LamRAQwen2VL(model_args.model_name) setattr(base_model, 'config', config) elif model_args.model_backbone == LamRA_QWEN2_5: base_model = LamRAQwen25VL(model_args.model_name) setattr(base_model, 'config', config) elif model_args.model_backbone == COLPALI: base_model = ColPali.from_pretrained(model_args.model_name) setattr(base_model, 'config', config) else: # Loading external base model from HF config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) config.use_cache = False base_model = cls.TRANSFORMER_CLS.from_pretrained( model_name_or_path, **kwargs, config=config, torch_dtype=torch.bfloat16, trust_remote_code=True) # Building the model on top of the base if model_args.lora: print_master(f'Loading LoRA from {model_name_or_path}') lora_config = LoraConfig.from_pretrained(model_name_or_path) lora_model = PeftModel.from_pretrained(base_model, model_name_or_path, config=lora_config, is_trainable=is_trainable) lora_model.load_adapter(model_name_or_path, lora_model.active_adapter, is_trainable=is_trainable) if not is_trainable: lora_model = lora_model.merge_and_unload() model = cls( encoder=lora_model, pooling=model_args.pooling, normalize=model_args.normalize, temperature=model_args.temperature ) else: model = cls( encoder=base_model, pooling=model_args.pooling, normalize=model_args.normalize, temperature=model_args.temperature ) model.model_backbone = model_args.model_backbone return model def save(self, output_dir: str): self.encoder.save_pretrained(output_dir) def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs): # GradCache:只给一侧 -> 返回多层表示 if qry is not None and tgt is None: qry_reps = self._encode_multi(qry) # [B, K, D] return {"qry_reps": qry_reps, "tgt_reps": None} if tgt is not None and qry is None: tgt_reps = self._encode_multi(tgt) # [B, K, D] return {"qry_reps": None, "tgt_reps": tgt_reps} # 非 GradCache:两侧同时给,直接算逐层配对的加权 CE q_multi = self._encode_multi(qry) # [B, K, D] p_multi = self._encode_multi(tgt) # [B, K, D] # DDP gather if self.is_ddp: q_multi_all = self._dist_gather_tensor(q_multi) # [B*, K, D] p_multi_all = self._dist_gather_tensor(p_multi) # [B*, K, D] else: q_multi_all, p_multi_all = q_multi, p_multi Bglob, K, D = q_multi_all.shape assert p_multi_all.shape[:2] == (Bglob, K), f"Shape mismatch: q {q_multi_all.shape}, p {p_multi_all.shape}" target = torch.arange(Bglob, device=q_multi_all.device, dtype=torch.long) w = torch.tensor(self.supervise_weights, dtype=torch.float32, device=q_multi_all.device) w = torch.clamp(w, min=0) w = w / max(w.sum().item(), 1e-8) # 计算对齐/非对齐门控:同为含图像或同为不含图像 => aligned # 先在本rank上做,再all_gather与 q_multi_all/p_multi_all 对齐 q_has_img_local = self._has_image(qry) # [B_local] p_has_img_local = self._has_image(tgt) # [B_local] if self.is_ddp: q_has_img = self._dist_gather_tensor(q_has_img_local) p_has_img = self._dist_gather_tensor(p_has_img_local) else: q_has_img, p_has_img = q_has_img_local, p_has_img_local aligned_mask = (q_has_img == p_has_img).float() # [Bglob] misaligned_mask = 1.0 - aligned_mask loss = 0.0 last_idx = K - 1 # 1) 最后一层:始终用对比损失 logits_last = torch.matmul(q_multi_all[:, last_idx, :], p_multi_all[:, last_idx, :].transpose(0, 1)) / self.temperature loss_last = self.cross_entropy(logits_last, target) loss = loss + w[last_idx] * loss_last # 2) 中间层:对齐→对比;非对齐→自蒸馏(可选极小对比) for k in range(0, last_idx): # 2.1 中间层对比(per-sample masked mean) logits_k = torch.matmul(q_multi_all[:, k, :], p_multi_all[:, k, :].transpose(0, 1)) / self.temperature loss_vec = torch.nn.functional.cross_entropy(logits_k, target, reduction='none') # [Bglob] if getattr(self, 'gate_by_image', True): # 对齐样本:权重=1;非对齐样本:权重=misalign_mid_ce(默认0) weight_mask = aligned_mask + self.misalign_mid_ce * misaligned_mask else: # 不门控:全样本权重=1 weight_mask = torch.ones_like(aligned_mask) mid_ce = self._masked_mean(loss_vec, weight_mask) # 2.2 中间层自蒸馏(单样本,teacher stop-grad) do_distill = (self.distill_beta is not None) and (self.distill_beta > 0.0) if do_distill: q_teacher = q_multi_all[:, last_idx, :].detach() p_teacher = p_multi_all[:, last_idx, :].detach() # 余弦相似度 -> (1 - cos) dist_q = 1.0 - torch.nn.functional.cosine_similarity(q_multi_all[:, k, :], q_teacher, dim=-1) # [Bglob] dist_p = 1.0 - torch.nn.functional.cosine_similarity(p_multi_all[:, k, :], p_teacher, dim=-1) # [Bglob] dist_vec = dist_q + dist_p # [Bglob] if getattr(self, 'gate_by_image', True): if getattr(self, 'distill_on_aligned', False): dist_mask = torch.ones_like(aligned_mask) # 对齐与非对齐都蒸馏 else: dist_mask = misaligned_mask # 仅非对齐蒸馏 else: dist_mask = torch.ones_like(aligned_mask) mid_distill = self._masked_mean(dist_vec, dist_mask) mid_total = mid_ce + self.distill_beta * mid_distill else: mid_total = mid_ce loss = loss + w[k] * mid_total if self.is_ddp: loss = loss * self.world_size return loss def _dist_gather_tensor(self, t: Tensor): t = t.contiguous() all_tensors = [torch.empty_like(t) for _ in range(self.world_size)] dist.all_gather(all_tensors, t) all_tensors[self.process_rank] = t all_tensors = torch.cat(all_tensors, dim=0) return all_tensors def compute_similarity(self, q_reps, p_reps): return torch.matmul(q_reps, p_reps.transpose(0, 1))