from functools import wraps from typing import Callable, Union, Tuple, Any import torch from torch import Tensor from torch import distributed as dist from .context_managers import RandContext def cached(func: Callable[..., Tensor]): """ A decorator that takes a pytorch call function into a cached compatible version. :param func: A function that calls the pytorch and return representation tensor. :return: A function that returns 1) representation leaf tensors for cache construction, 2) a closure function for the 2nd forward and the cached backward. Call 2) with 1) as argument after calling backward on the loss Tensor. """ @wraps(func) def cache_func(*args, **kwargs): rnd_state = RandContext() with torch.no_grad(): reps_no_grad = func(*args, **kwargs) if isinstance(reps_no_grad, Tensor): reps_no_grad = (reps_no_grad, ) else: assert all(isinstance(v, Tensor) for v in reps_no_grad) leaf_reps = tuple(t.detach().requires_grad_() for t in reps_no_grad) @wraps(func) def forward_backward_func(cache_reps: Union[Tensor, Tuple[Tensor]]): with rnd_state: reps = func(*args, **kwargs) if isinstance(reps, Tensor): reps = (reps,) if isinstance(cache_reps, Tensor): cache_reps = (cache_reps,) assert len(reps) == len(cache_reps) surrogate = sum(map(lambda u, v: torch.dot(u.flatten(), v.grad.flatten()), reps, cache_reps), 0) surrogate.backward() return leaf_reps + (forward_backward_func,) return cache_func def _cat_tensor_list(xx): if isinstance(xx, list) and len(xx) > 0 and all(isinstance(x, Tensor) for x in xx): return torch.cat(xx) else: return xx def cat_input_tensor(func: Callable[..., Tensor]): """ A decorator that concatenates positional and keyword arguments of type List[Tensor] into a single Tensor on the 0 dimension. This can come in handy dealing with results of representation tensors from multiple cached forward. :param func: A loss function :return: Decorated loss function for cached results. """ @wraps(func) def cat_f(*args, **kwargs): args_cat = [_cat_tensor_list(x) for x in args] kwargs_cat = dict((k, _cat_tensor_list(v)) for k, v in kwargs.values()) return func(*args_cat, **kwargs_cat) return cat_f def _maybe_gather_tensor(t: Any, axis: int): if not isinstance(t, Tensor): return t gathered = [torch.empty_like(t) for _ in range(dist.get_world_size())] dist.all_gather(gathered, t) gathered[dist.get_rank()] = t return torch.cat(gathered, dim=axis) def gather_input_tensor(func: Callable[..., Tensor], axis=0): """ A decorator that all-gather positional and keyword arguments of type Tensor and concatenate them on axis. Intended to be used with distributed contrastive learning loss. :param func: A loss function :param axis: The axis the gathered tensors are concatenated. :return: Decorated loss function for distributed training. """ @wraps(func) def f(*args, **kwargs): args_gathered = [_maybe_gather_tensor(x, axis=axis) for x in args] kwargs_gathered = dict((k, _maybe_gather_tensor(v, axis=axis)) for k, v in kwargs.values()) return func(*args_gathered, **kwargs_gathered) return f