from functools import partial import jax import jax.numpy as jnp from .functional import chunk_encode, cache_grad, unchunk_args def cache_train_step(loss_fn, state, ss, tt, axis='device'): def encode_with_params(params, **kwargs): return state.apply_fn(params=params, **kwargs) encode_fn = chunk_encode(partial(encode_with_params, state.params)) grad_fn = cache_grad(encode_with_params) s_reps = encode_fn(**ss) t_reps = encode_fn(**tt) @unchunk_args(axis=0, argnums=(0, 1)) def grad_cache_fn(xx, yy): return jnp.mean(loss_fn(xx, yy, axis=axis)) loss, (s_grads, t_grads) = jax.value_and_grad(grad_cache_fn, argnums=(0, 1))(s_reps, t_reps) grads = jax.tree_map(lambda v: jnp.zeros_like(v), state.params) grads = grad_fn(state.params, grads, s_grads, **ss) grads = grad_fn(state.params, grads, t_grads, **tt) loss, grads = jax.lax.pmean([loss, grads], axis) new_state = state.apply_gradients(grads=grads) return loss, new_state