import os import re import ast import math import yaml import warnings from datetime import datetime from dataclasses import dataclass, field from collections import defaultdict from typing import Any, Callable, Optional, Union, Sized, Dict, Tuple, List, Literal, Type import numpy as np import torch from torch import nn import torch.nn.functional as F import datasets from PIL import Image from trl import ModelConfig, ScriptArguments, TrlParser, get_peft_config from trl.models import unwrap_model_for_generation from transformers import ( TrainingArguments, Trainer, GenerationConfig, ) from transformers.modeling_utils import PreTrainedModel from transformers.utils import ( is_safetensors_available, is_peft_available ) if is_safetensors_available(): import safetensors.torch from peft import PeftConfig, get_peft_model, PeftModel from accelerate.utils import is_peft_model, set_seed from qwen_vl_utils import process_vision_info from src.model.vlm_backbone.qwen2_5_vl_gp.process_gp import Qwen2_5_VL_GP_Processor from transformers.trainer import ( logger, TRAINING_ARGS_NAME, CONFIG_NAME, ADAPTER_WEIGHTS_NAME, ADAPTER_SAFE_WEIGHTS_NAME, WEIGHTS_NAME, WEIGHTS_INDEX_NAME, SAFE_WEIGHTS_NAME, SAFE_WEIGHTS_INDEX_NAME, FSDP_MODEL_NAME, ) from src.model.vlm_backbone.qwen2_5_vl_gp.warppers import debug_calls from src.utils_gp import ( LLMClient, norm_bboxes, extract_one_bbox_from_str, cal_paired_ious, print_rank0 ) # ---------- Datasets ---------- QUERY_KEY = "query" IMG_PATH_KEY = "img_path" ANSWER_KEY = "answer" NORMED_BBOXES_KEY = "normed_bboxes" SCORE_FUNCS_KEY = "score_funcs" REMAIN_KEYS = [ QUERY_KEY, IMG_PATH_KEY, NORMED_BBOXES_KEY, ANSWER_KEY, SCORE_FUNCS_KEY, ] MAPPER_REGISTRY: Dict[str, Callable] = {} FILTER_REGISTRY: Dict[str, Callable] = {} def register_mappers(): def wrapper(func): name = func.__name__.replace("_dataset_mapper", "") MAPPER_REGISTRY[name] = func return func return wrapper def register_filters(): def wrapper(func): name = func.__name__.replace("_dataset_filter", "") FILTER_REGISTRY[name] = func return func return wrapper @register_mappers() def cot_train_dataset_mapper(one_data, **kwargs): query = one_data['question'] if 'prompt' in kwargs: query = kwargs['prompt'].format(query) answer = one_data['answer'] image = one_data['image'] dataset = one_data['dataset'] img_path = os.path.join(kwargs['img_dir'], "cot", dataset, image) bboxes = one_data['bboxs'] return { QUERY_KEY: query, ANSWER_KEY: answer, IMG_PATH_KEY: img_path, NORMED_BBOXES_KEY: bboxes, SCORE_FUNCS_KEY: kwargs['score_funcs'] } @register_mappers() def cot_train_fullmask_dataset_mapper(one_data, **kwargs): query = one_data['question'] if 'prompt' in kwargs: query = kwargs['prompt'].format(query) answer = one_data['answer'] image = one_data['image'] dataset = one_data['dataset'] img_path = os.path.join(kwargs['img_dir'], "cot", dataset, image) normed_bboxes = [[0.0, 0.0, 1.0, 1.0]] return { QUERY_KEY: query, ANSWER_KEY: answer, IMG_PATH_KEY: img_path, NORMED_BBOXES_KEY: normed_bboxes, SCORE_FUNCS_KEY: kwargs['score_funcs'] } @register_mappers() def norm_bboxes_dataset_mapper(one_data, **kwargs): bboxes = one_data.pop(NORMED_BBOXES_KEY) if 'width' in one_data: width = one_data['width'] height = one_data['height'] else: img_path = one_data[IMG_PATH_KEY] img_pil = Image.open(img_path) width, height = img_pil.size img_pil.close() normed_bboxes = norm_bboxes(bboxes, height, width, bbox_type=kwargs['bbox_type']) one_data[NORMED_BBOXES_KEY] = normed_bboxes return one_data @register_filters() def image_exist_dataset_filter(one_data, **kwargs): img_path = one_data[IMG_PATH_KEY] try: img = Image.open(img_path) img.close() return True except (FileNotFoundError, OSError) as e: print_rank0(f"Image not found or invalid: {img_path}. Error: {e}") return False except Exception as e: print_rank0(f"Unexpected error while checking image: {img_path}. Error: {e}") return False @register_filters() def inputs_seq_length_dataset_filter(one_data, **kwargs): processor = kwargs['processor'] max_input_seq_length = kwargs.get('max_input_seq_length', None) max_input_remain_seq_length = kwargs.get('max_input_remain_seq_length', None) if max_input_seq_length is None and max_input_remain_seq_length is None: return True img_path = one_data[IMG_PATH_KEY] query = one_data[QUERY_KEY] normed_bboxes = [one_data[NORMED_BBOXES_KEY]] if max_input_remain_seq_length is not None else None messages = [[{"role": "user", "content": [{"type": "image", "image": img_path}, {"type": "text", "text": query}]}]] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, video_inputs = process_vision_info(messages) inputs = processor( text=text, images=image_inputs, videos=video_inputs, normed_bboxes=normed_bboxes, padding=True, return_tensors="pt", ) seq_length = inputs.input_ids.shape[1] if max_input_seq_length is not None and seq_length > max_input_seq_length: return False if max_input_remain_seq_length is not None: ref_token_masks = inputs.ref_token_masks[0] reduced_num = ref_token_masks.numel() - ref_token_masks.sum().item() remain_seq_length = seq_length - reduced_num if remain_seq_length > max_input_remain_seq_length: return False return True # ---------- Loss ---------- LOSS_REGISTRY: Dict[str, Type[nn.Module]] = {} def register_loss(loss_class): name = loss_class.__name__ if name in LOSS_REGISTRY: raise ValueError(f"Loss class '{name}' is already registered.") LOSS_REGISTRY[name] = loss_class return loss_class @register_loss class DiceLoss(nn.Module): def __init__(self, epsilon: float = 1e-6, **kwargs): super().__init__() self.epsilon = epsilon def forward(self, image_token_mask_logits: List[torch.Tensor], ref_token_masks: List[torch.Tensor] ) -> torch.Tensor: if not isinstance(image_token_mask_logits, list) or not isinstance(ref_token_masks, list): raise TypeError("Inputs must be lists of tensors.") if len(image_token_mask_logits) != len(ref_token_masks): raise ValueError(f"Input lists must have the same length, but got " f"{len(image_token_mask_logits)} and {len(ref_token_masks)}") if len(image_token_mask_logits) == 0: return torch.tensor(0.0, device=image_token_mask_logits[0].device if image_token_mask_logits else None) batch_size = len(image_token_mask_logits) total_dice_loss = 0.0 for i in range(batch_size): pred_mask_1d = image_token_mask_logits[i].flatten().sigmoid() gt_mask_1d = ref_token_masks[i].flatten().to(pred_mask_1d.device, dtype=torch.float) intersection = (pred_mask_1d * gt_mask_1d).sum() pred_sum = pred_mask_1d.sum() gt_sum = gt_mask_1d.sum() dice_coefficient = (2.0 * intersection + self.epsilon) / (pred_sum + gt_sum + self.epsilon) total_dice_loss += (1.0 - dice_coefficient) return total_dice_loss / batch_size @register_loss class BCELoss(nn.Module): def ___init__(self, **kwargs): super(BCELoss, self).__init__() def forward(self, image_token_mask_logits: List[torch.Tensor], ref_token_masks: List[torch.Tensor] ) -> torch.Tensor: batch_size = len(image_token_mask_logits) total_bce_loss = 0.0 for i in range(batch_size): pred_mask_1d = image_token_mask_logits[i].flatten() gt_mask_1d = ref_token_masks[i].flatten().to(pred_mask_1d.device) bce_loss = F.binary_cross_entropy_with_logits( pred_mask_1d.float(), gt_mask_1d.float(), ) total_bce_loss += bce_loss return total_bce_loss / batch_size @register_loss class MaskLoss(nn.Module): def __init__(self, dice_weight: float = 0.5, bce_weight: float = 0.5, epsilon: float = 1e-6, **kwargs): super().__init__() self.dice_loss = DiceLoss(epsilon=epsilon) self.bce_loss = BCELoss() self.dice_weight = dice_weight self.bce_weight = bce_weight def forward(self, image_token_mask_logits: List[torch.Tensor], ref_token_masks: List[torch.Tensor] ) -> torch.Tensor: dice_loss = self.dice_loss(image_token_mask_logits, ref_token_masks) bce_loss = self.bce_loss(image_token_mask_logits, ref_token_masks) return self.dice_weight * dice_loss + self.bce_weight * bce_loss # ---------- (Stub) Score functions (for YAML compatibility) ---------- SCORE_REGISTRY: Dict[str, Callable] = {} def register_score(): def wrapper(func): name = func.__name__.replace("_score", "") SCORE_REGISTRY[name] = func return func return wrapper @register_score() def llm_score(query, completion, answer, args): """ YAML 里可能写了 'score_funcs: [llm]'。本工程不使用这些分数,返回 0 占位即可。 """ # 返回与 batch 大小一致的 0 分 if isinstance(query, list): return [0.0] * len(query) return [0.0] # ---------- Dataset & Collator & Sampler ---------- def _resolve_rel_path(rel_path: str, base_dir: str) -> str: """ Resolve a relative path against base_dir; if not found, try parent dirs up to 4 levels. """ if os.path.isabs(rel_path): return rel_path candidates = [os.path.join(base_dir, rel_path)] parent = base_dir for _ in range(4): parent = os.path.dirname(parent) if not parent or parent in ("/", ""): break candidates.append(os.path.join(parent, rel_path)) for cand in candidates: if os.path.exists(cand): return cand return candidates[0] class GPDataset(torch.utils.data.Dataset): """ A PyTorch Dataset that loads and combines multiple datasets based on a YAML configuration file. It handles sampling and applies specified mapping functions. """ @classmethod def _load_config(cls, config_path: str) -> Dict[str, Any]: print_rank0(f"Loading configuration from: {config_path}") try: with open(config_path, 'r', encoding='utf-8') as f: conf = yaml.safe_load(f) if conf is None: raise ValueError("YAML config is empty.") base_dir = os.path.dirname(config_path) # 允许传“顶层训练配置”:里面用 train_dataset 指向真正的数据清单 if 'datasets' not in conf: if 'train_dataset' in conf: ds_yaml = _resolve_rel_path(conf['train_dataset'], base_dir) print_rank0(f"Loading dataset config from: {ds_yaml}") with open(ds_yaml, 'r', encoding='utf-8') as f: conf2 = yaml.safe_load(f) if conf2 is None or 'datasets' not in conf2: raise ValueError(f"'{ds_yaml}' missing 'datasets' key.") conf = conf2 base_dir = os.path.dirname(ds_yaml) else: raise ValueError("YAML config is missing both 'datasets' and 'train_dataset' keys.") conf['__root_dir__'] = base_dir print_rank0("Configuration loaded successfully.") return conf except Exception as e: print_rank0(f"Failed to load config: {e}") raise @classmethod def _apply_sampling(cls, dataset: datasets.Dataset, strategy: Optional[str], seed: Optional[int] = None) -> datasets.Dataset: """Applies sampling strategy to a dataset.""" if not strategy: print_rank0("No sampling strategy specified, using full dataset.") return dataset try: parts = strategy.split(':') if len(parts) != 2: raise ValueError(f"Invalid sampling strategy format: '{strategy}'. Expected 'type:value'.") strat_type, strat_value = parts[0].lower(), parts[1] num_samples = int(strat_value) total_size = len(dataset) if num_samples <= 0: raise ValueError(f"Sampling value must be positive, got: {num_samples} [{strategy}]") num_samples = min(num_samples, total_size) print_rank0(f"Applying sampling: {strategy} ({num_samples} samples) to dataset of size {total_size}") if strat_type == "first": return dataset.select(range(num_samples)) elif strat_type == "end": start_index = max(0, total_size - num_samples) return dataset.select(range(start_index, total_size)) elif strat_type == "random": shuffled_dataset = dataset.shuffle(seed=seed) return shuffled_dataset.select(range(num_samples)) else: print_rank0(f"Warning: Unknown sampling strategy type: '{strat_type}'. Using full dataset.") return dataset except ValueError as e: print_rank0(f"Error parsing sampling strategy '{strategy}': {e}. Using full dataset.") return dataset except Exception as e: print_rank0(f"An unexpected error occurred during sampling: {e}. Using full dataset.") return dataset @classmethod def _all_processed_datasets(cls, config, processor, args): root_dir = config.get('__root_dir__', os.getcwd()) all_processed_datasets: Dict[str, datasets.Dataset] = {} for i, dataset_config in enumerate(config['datasets']): print_rank0(f"\nProcessing dataset entry {i+1}/{len(config['datasets'])}...") json_path = dataset_config.get('json_path') if not json_path: print_rank0(f"Warning: Skipping dataset entry {i+1} due to missing 'json_path'.") continue json_path = _resolve_rel_path(json_path, root_dir) base_name = '.'.join(os.path.basename(json_path).split('.')[:-1]) dataset_name = dataset_config.get('dataset_name', base_name) sampling_strategy = dataset_config.get('sampling_strategy', None) sampling_seed = dataset_config['sampling_seed'] if 'sampling_seed' in dataset_config else getattr(args, 'sampling_seed', 42) mapper_name = dataset_config.get('mapper') bbox_type = dataset_config.get('bbox_type') # img_dir: 优先用数据 YAML 里的;否则尝试 args.img_dir(可能不存在) if 'img_dir' in dataset_config: img_dir = _resolve_rel_path(dataset_config['img_dir'], root_dir) else: img_dir = getattr(args, 'img_dir', None) if img_dir is not None: img_dir = _resolve_rel_path(img_dir, root_dir) additional_mappers = dataset_config.get('additional_mappers', []) score_funcs = dataset_config.get('score_funcs', []) prompt = dataset_config.get('prompt', None) max_input_seq_length = dataset_config['max_input_seq_length'] if 'max_input_seq_length' in dataset_config else getattr(args, 'max_input_seq_length', None) max_input_remain_seq_length = dataset_config['max_input_remain_seq_length'] if 'max_input_remain_seq_length' in dataset_config else getattr(args, 'max_input_remain_seq_length', None) # 安全处理 score_funcs:过滤未注册的(不报错,只警告) if score_funcs: filtered = [] for sf in score_funcs: if sf in SCORE_REGISTRY: filtered.append(sf) else: print_rank0(f"Warning: Score function '{sf}' not registered. Will ignore.") score_funcs = filtered try: print_rank0(f"Loading raw data from: {json_path}") raw_dataset = datasets.load_dataset('json', data_files=json_path, split='train') print_rank0(f"Loaded {len(raw_dataset)} examples raw.") sampled_dataset = cls._apply_sampling(raw_dataset, sampling_strategy, sampling_seed) if len(sampled_dataset) == 0: print_rank0("Dataset is empty after sampling, skipping.") continue print_rank0(f"Dataset size after sampling: {len(sampled_dataset)}") mapper_func = MAPPER_REGISTRY[mapper_name] print_rank0(f"Applying mapper: '{mapper_name}'") mapper_kwargs = { 'img_dir': img_dir, 'score_funcs': score_funcs, } if prompt is not None: mapper_kwargs['prompt'] = prompt print_rank0(f"Mapper arguments: {mapper_kwargs}") processed_dataset = sampled_dataset.map( mapper_func, num_proc=8, fn_kwargs=mapper_kwargs, ) processed_dataset = processed_dataset.remove_columns( [col for col in processed_dataset.column_names if col not in REMAIN_KEYS] ) print_rank0("Applying dataset filter: 'image_exist_dataset_filter'") processed_dataset = processed_dataset.filter( image_exist_dataset_filter, num_proc=8, fn_kwargs={} ) print_rank0(f"Processed dataset size after image_exist_dataset_filter: {len(processed_dataset)}") if max_input_seq_length is not None or max_input_remain_seq_length is not None: processed_dataset = processed_dataset.filter( inputs_seq_length_dataset_filter, num_proc=8, fn_kwargs={ 'processor': processor, 'max_input_seq_length': max_input_seq_length, 'max_input_remain_seq_length': max_input_remain_seq_length, } ) print_rank0(f"Processed dataset size after inputs_seq_length_dataset_filter: {len(processed_dataset)}") for additional_mapper in additional_mappers: mapper_func = MAPPER_REGISTRY[additional_mapper] print_rank0(f"Applying additional mapper: '{additional_mapper}'") processed_dataset = processed_dataset.map( mapper_func, num_proc=8, fn_kwargs={ 'bbox_type': bbox_type, } ) print_rank0(f"Processed dataset size: {len(processed_dataset)}") if len(processed_dataset) == 0: print_rank0(f"Warning: Processed dataset {dataset_name} is empty after mapping. Skipping.") continue if dataset_name in all_processed_datasets: dataset_name_with_uuid = f"{dataset_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}" print_rank0(f"Warning: Dataset name '{dataset_name}' already exists. Renaming to '{dataset_name_with_uuid}'") all_processed_datasets[dataset_name_with_uuid] = processed_dataset else: all_processed_datasets[dataset_name] = processed_dataset except FileNotFoundError: print_rank0(f"Error: Data file not found for dataset entry {i+1}: {json_path}. Skipping.") except Exception as e: print_rank0(f"Error processing dataset entry {i+1} ({json_path}): {e}. Skipping.") return all_processed_datasets def __init__(self, config_path: str, processor: Qwen2_5_VL_GP_Processor, script_args: Optional[Any] = None): """ Initializes the GPDataset. Args: config_path (str): Path to the YAML configuration file. processor (Qwen2_5_VL_GP_Processor): Processor for handling text and vision data. script_args (Any, optional): Additional arguments passed from the script (e.g., training args, could contain seed). Defaults to None. """ super().__init__() self.args = script_args self.config = self._load_config(config_path) self.processor = processor all_processed_datasets = self._all_processed_datasets(self.config, self.processor, self.args) if all_processed_datasets: print_rank0(f"\nConcatenating {len(all_processed_datasets)} processed dataset(s)...") self.final_dataset = datasets.concatenate_datasets(list(all_processed_datasets.values())) if len(self.final_dataset) == 0: raise ValueError("Final dataset is empty after concatenation.") print_rank0(f"Final combined dataset size: {len(self.final_dataset)}") print_rank0(f"Final dataset features: {self.final_dataset.features}") else: raise ValueError("No datasets were successfully processed. Please check your configuration.") self.final_dataset = None def __len__(self) -> int: return len(self.final_dataset) if self.final_dataset else 0 def __getitem__(self, index: int) -> Dict[str, Any]: if self.final_dataset is None: raise IndexError("Dataset is not initialized or is empty.") if not 0 <= index < len(self.final_dataset): raise IndexError(f"Index {index} out of bounds for dataset of size {len(self.final_dataset)}") return self.final_dataset[index] @classmethod def get_processed_dataset_dict(cls, config_path: str, processor: Qwen2_5_VL_GP_Processor, script_args: Optional[Any] = None) -> Dict[str, datasets.Dataset]: config = cls._load_config(config_path) all_processed_datasets = cls._all_processed_datasets(config, processor, script_args) return all_processed_datasets class GPCollator: def __init__(self, processor, is_sft): self.processor = processor self.is_sft = is_sft self.im_start_id = self.processor.tokenizer.encode("<|im_start|>")[0] def _prepare_labels_from_input_ids(self, input_ids): B, L = input_ids.shape labels = input_ids.clone() mask = input_ids == self.im_start_id flipped_mask = mask.flip(dims=(1,)) first_idx_in_flipped = torch.argmax(flipped_mask.int(), dim=1) last_pos = (L - 1) - first_idx_in_flipped mask_until_idx = last_pos + 3 mask_until_idx = torch.clamp(mask_until_idx, max=L) arange_l = torch.arange(L, device=input_ids.device).expand(B, -1) modification_mask = arange_l < mask_until_idx.unsqueeze(1) labels[modification_mask] = -100 return labels def __call__(self, features): messages = [] normed_bboxes = [] answers = [] querys = [] score_funcs = [] for feature in features: query = feature[QUERY_KEY] answer = feature[ANSWER_KEY] img_path = feature[IMG_PATH_KEY] if self.is_sft: messages.append([{"role": "user", "content": [{"type": "image", "image": img_path}, {"type": "text", "text": query}]}, {"role": "assistant", "content": [{"type": "text", "text": answer}]}]) else: messages.append([{"role": "user", "content": [{"type": "image", "image": img_path}, {"type": "text", "text": query}]}]) normed_bboxes.append(feature[NORMED_BBOXES_KEY]) querys.append(query) answers.append(answer) score_funcs.append(feature[SCORE_FUNCS_KEY]) text = self.processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=(not self.is_sft) ) image_inputs, video_inputs = process_vision_info(messages) inputs = self.processor( text=text, normed_bboxes=normed_bboxes, images=image_inputs, videos=video_inputs, padding=True, return_tensors="pt", ) if self.is_sft: labels = self._prepare_labels_from_input_ids(inputs.input_ids) inputs["labels"] = labels inputs[QUERY_KEY] = querys inputs[ANSWER_KEY] = answers inputs[SCORE_FUNCS_KEY] = score_funcs return inputs