import os import json import math import time import random import datetime import numpy as np import torch import torch.distributed as dist from tqdm import tqdm from torch.utils.data import DataLoader from transformers import HfArgumentParser, AutoConfig from sklearn.model_selection import train_test_split import yaml from datasets import concatenate_datasets from src.arguments import ModelArguments, DataArguments, TrainingArguments from src.data.collator.eval_collator import MultimodalEvalDataCollator from src.data.eval_dataset.base_eval_dataset import AutoEvalPairDataset, generate_cand_dataset from src.model.model_cut_layer_AOP_add_text_cut import MMEBModel from src.model.processor import get_backbone_name, load_processor from src.utils import batch_to_device, print_master # ---------------- Utils ---------------- def _parse_bool(v: str, default=False): if v is None: return default v = v.strip().lower() return v in {"1", "true", "yes", "y", "t", "on"} def _parse_int(v: str, default=None): try: return int(v) if v is not None else default except Exception: return default def _parse_float(v: str, default=None): try: return float(v) if v is not None else default except Exception: return default def get_env_aop_config(): enabled = _parse_bool(os.environ.get("AOP_ENABLED"), False) apply_to = os.environ.get("AOP_APPLY", "qry").strip().lower() layer_idx = _parse_int(os.environ.get("AOP_LAYER"), None) mode = os.environ.get("AOP_MODE", "ratio").strip().lower() prune_vision = _parse_bool(os.environ.get("AOP_PRUNE_VISION"), True) prune_text = _parse_bool(os.environ.get("AOP_PRUNE_TEXT"), False) keep_ratio_v = _parse_float(os.environ.get("AOP_KEEP_RATIO_VISION"), None) keep_ratio_t = _parse_float(os.environ.get("AOP_KEEP_RATIO_TEXT"), None) attn_agg = os.environ.get("AOP_ATTENTION_AGG", "mean").strip().lower() ee_layer = _parse_int(os.environ.get("EE_LAYER"), None) return { "enabled": enabled, "apply_to": apply_to, "layer_idx": layer_idx, "mode": mode, "prune_vision": prune_vision, "prune_text": prune_text, "keep_ratio_vision": keep_ratio_v, "keep_ratio_text": keep_ratio_t, "attn_agg": attn_agg, "ee_layer": ee_layer, } def pad_dataset_to_divisible(dataset, world_size): num_samples = len(dataset) if num_samples % world_size == 0: return dataset, num_samples num_to_add = world_size - (num_samples % world_size) padding_data = dataset.select([i % len(dataset) for i in range(num_to_add)]) padded_dataset = concatenate_datasets([dataset, padding_data]) return padded_dataset, num_samples + num_to_add # ---------- Candidate encode in one pass (mid+last) ---------- @torch.no_grad() def encode_candidates_both_layers(model: MMEBModel, loader: DataLoader, training_args: TrainingArguments, mid_layer: int): model.eval() all_mid, all_last, all_ids = [], [], [] for inputs, infos in tqdm(loader, desc="[DUMP] Cands[BOTH]", disable=False): inputs = batch_to_device(inputs, training_args.device) # cand 侧不启用 AOP aop_cfg = getattr(model.encoder, "aop_prune_config", None) if isinstance(aop_cfg, dict) and aop_cfg: aop_off = dict(aop_cfg) aop_off["enabled"] = False setattr(model.encoder, "aop_prune_config", aop_off) with torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=True): out = model.encoder( **inputs, return_dict=True, output_hidden_states=True, stop_at_layer=None, compute_lm_head=False, ) hs_list = out.hidden_states assert hs_list is not None and len(hs_list) > mid_layer, "hidden_states too short for mid_layer" mid_hs, last_hs = hs_list[mid_layer], hs_list[-1] am = inputs.get("attention_mask", None) if am is not None and hasattr(am, "device") and am.device != mid_hs.device: am = am.to(mid_hs.device) reps_mid = model._pooling(mid_hs, am).detach().float().cpu() reps_last = model._pooling(last_hs, am).detach().float().cpu() all_mid.append(reps_mid) all_last.append(reps_last) all_ids.extend([info["cand_name"] for info in infos]) # 恢复 AOP if isinstance(aop_cfg, dict) and aop_cfg: setattr(model.encoder, "aop_prune_config", aop_cfg) cand_mid = torch.cat(all_mid, dim=0).numpy() cand_last = torch.cat(all_last, dim=0).numpy() return cand_mid, cand_last, all_ids # ---------- Build Phase A features ---------- @torch.no_grad() def build_phaseA_features_global( reps_mid_t: torch.Tensor, # [B,D] GPU cand_mid_t: torch.Tensor, # [Nc,D] GPU am_mid: torch.Tensor, # [B,L] input_ids: torch.Tensor, # [B,L] cfg, # model.encoder.config topk: int = 200, temp: float = 0.05, ): device = reps_mid_t.device B = reps_mid_t.size(0) # 相似度类 scores_t = reps_mid_t @ cand_mid_t.T k = min(topk, scores_t.size(1)) vals_t, _ = torch.topk(scores_t, k=k, dim=1) s1 = vals_t[:, 0] s2 = vals_t[:, 1] if k >= 2 else torch.zeros_like(s1) margin = s1 - s2 p_t = torch.softmax(vals_t / max(temp, 1e-6), dim=1) H = -(p_t * (torch.log(p_t + 1e-12))).sum(dim=1) / math.log(max(k, 1)) sum_p2 = (p_t**2).sum(dim=1) # 长度比例 am = am_mid.to(torch.bool) iid = input_ids image_token_id = getattr(cfg, "image_token_id", None) video_token_id = getattr(cfg, "video_token_id", None) bos_id = getattr(cfg, "bos_token_id", None) eos_id = getattr(cfg, "eos_token_id", None) pad_id = getattr(cfg, "pad_token_id", None) is_image = (iid == image_token_id) if (image_token_id is not None and image_token_id >= 0) else torch.zeros_like(iid, dtype=torch.bool) is_video = (iid == video_token_id) if (video_token_id is not None and video_token_id >= 0) else torch.zeros_like(iid, dtype=torch.bool) is_vision = (is_image | is_video) & am is_special = torch.zeros_like(iid, dtype=torch.bool) for tid in [bos_id, eos_id, pad_id]: if tid is not None and tid >= 0: is_special |= (iid == tid) is_text = am & (~is_vision) & (~is_special) L_vis = is_vision.sum(dim=1).float() L_txt = is_text.sum(dim=1).float() L_tot = am.sum(dim=1).float().clamp(min=1.0) r_vis = L_vis / L_tot r_txt = L_txt / L_tot # 类型 one-hot is_I = ((L_vis > 0) & (L_txt == 0)).float() is_T = ((L_txt > 0) & (L_vis == 0)).float() is_IT = ((L_txt > 0) & (L_vis > 0)).float() feats = torch.stack([s1, s2, margin, H, sum_p2, L_txt, L_vis, L_tot, r_txt, r_vis, is_I, is_T, is_IT], dim=1) return feats # [B,13] @torch.no_grad() def build_phaseA_features_local( reps_mid_t: torch.Tensor, # [B,D] cand_mid_t: torch.Tensor, # [Nc,D] am_mid: torch.Tensor, # [B,L] input_ids: torch.Tensor, # [B,L] cfg, per_sample_rows: list, # list[list[int]] topk: int = 200, temp: float = 0.05, ): device = reps_mid_t.device B = reps_mid_t.size(0) s1_list, s2_list, H_list, sum_p2_list = [], [], [], [] for b in range(B): rows = per_sample_rows[b] if len(rows) == 0: s1_list.append(torch.tensor(0.0, device=device)) s2_list.append(torch.tensor(0.0, device=device)) H_list.append(torch.tensor(1.0, device=device)) sum_p2_list.append(torch.tensor(0.0, device=device)) continue cmat = cand_mid_t[rows] sv = (reps_mid_t[b:b+1] @ cmat.T)[0] k = min(topk, sv.size(0)) vals, _ = torch.topk(sv, k=k, dim=0) s1_list.append(vals[0]) s2_list.append(vals[1] if k >= 2 else torch.tensor(0.0, device=device, dtype=vals.dtype)) p = torch.softmax(vals / max(temp, 1e-6), dim=0) H_list.append((-(p * (torch.log(p + 1e-12))).sum() / math.log(max(k, 1)))) sum_p2_list.append((p**2).sum()) s1 = torch.stack(s1_list) s2 = torch.stack(s2_list) H = torch.stack(H_list) sum_p2 = torch.stack(sum_p2_list) margin = s1 - s2 am = am_mid.to(torch.bool) iid = input_ids image_token_id = getattr(cfg, "image_token_id", None) video_token_id = getattr(cfg, "video_token_id", None) bos_id = getattr(cfg, "bos_token_id", None) eos_id = getattr(cfg, "eos_token_id", None) pad_id = getattr(cfg, "pad_token_id", None) is_image = (iid == image_token_id) if (image_token_id is not None and image_token_id >= 0) else torch.zeros_like(iid, dtype=torch.bool) is_video = (iid == video_token_id) if (video_token_id is not None and video_token_id >= 0) else torch.zeros_like(iid, dtype=torch.bool) is_vision = (is_image | is_video) & am is_special = torch.zeros_like(iid, dtype=torch.bool) for tid in [bos_id, eos_id, pad_id]: if tid is not None and tid >= 0: is_special |= (iid == tid) is_text = am & (~is_vision) & (~is_special) L_vis = is_vision.sum(dim=1).float() L_txt = is_text.sum(dim=1).float() L_tot = am.sum(dim=1).float().clamp(min=1.0) r_vis = L_vis / L_tot r_txt = L_txt / L_tot is_I = ((L_vis > 0) & (L_txt == 0)).float() is_T = ((L_txt > 0) & (L_vis == 0)).float() is_IT = ((L_txt > 0) & (L_vis > 0)).float() feats = torch.stack([s1, s2, margin, H, sum_p2, L_txt, L_vis, L_tot, r_txt, r_vis, is_I, is_T, is_IT], dim=1) return feats # [B,13] # ---------- Label(y_exit) ---------- def compute_label_top1_equal_global(scores_mid: np.ndarray, scores_last: np.ndarray) -> np.ndarray: top1_mid = scores_mid.argmax(axis=1) top1_last = scores_last.argmax(axis=1) return (top1_mid == top1_last).astype(np.int32) def compute_label_top1_equal_local(scores_mid_list, scores_last_list): y = [] for sv_mid, sv_last in zip(scores_mid_list, scores_last_list): if sv_mid.size == 0 or sv_last.size == 0: y.append(0) else: y.append(int(int(sv_mid.argmax()) == int(sv_last.argmax()))) return np.array(y, dtype=np.int32) # ---------------- Main dump ---------------- def main(): # DDP init if "RANK" in os.environ and dist.is_available() and not dist.is_initialized(): dist.init_process_group(backend="nccl", timeout=datetime.timedelta(minutes=60)) local_rank = dist.get_rank() if dist.is_initialized() else 0 parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments)) model_args, data_args, training_args = parser.parse_args_into_dataclasses() os.makedirs(data_args.encode_output_path, exist_ok=True) # Load model hf_config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True) if not getattr(model_args, "model_backbone", None): model_backbone = get_backbone_name(hf_config=hf_config, model_type=model_args.model_type) setattr(model_args, 'model_backbone', model_backbone) setattr(training_args, 'model_backbone', model_backbone) if local_rank == 0: processor = load_processor(model_args, data_args) model = MMEBModel.load(model_args, is_trainable=False, processor=processor) if dist.is_initialized(): dist.barrier() if local_rank != 0: processor = load_processor(model_args, data_args) time.sleep(random.randint(2 * local_rank, 3 * local_rank)) model = MMEBModel.load(model_args, is_trainable=False, processor=processor) model.eval() model = model.to(training_args.device, dtype=torch.bfloat16) # Configs ee_layer = int(os.environ.get("EE_LAYER", os.environ.get("AOP_LAYER", "12"))) feat_topk = int(os.environ.get("EE_FEAT_TOPK", "200")) force_no_aop = os.environ.get("DUMP_EXIT_NO_AOP", "1").strip().lower() in {"1", "true", "yes", "on"} # 切分比例 TRAIN_RATIO = 0.1 VAL_RATIO = 0.1 # Test ratio = 1 - 0.7 - 0.15 = 0.15 with open(data_args.dataset_config, 'r', encoding='utf-8') as yf: dataset_configs = yaml.safe_load(yf) for dataset_name, task_cfg in dataset_configs.items(): if dist.is_initialized(): dist.barrier() print_master(f"\n[DUMP] Processing {dataset_name} ...") if data_args.data_basedir: for key in ["image_root", "video_root", "frame_root", "clip_root", "data_path"]: if task_cfg.get(key): task_cfg[key] = os.path.join(data_args.data_basedir, task_cfg[key]) # 1. 加载全量数据 full_qry, corpus = AutoEvalPairDataset.instantiate(model_args=model_args, data_args=data_args, **task_cfg) full_cand = generate_cand_dataset(full_qry, corpus) # 2. [CRITICAL] 生成切分索引 & 全局索引映射 # 这一步确保我们在 Dump 时知道每个样本在全量数据集中的绝对位置 (Global Index) total_len = len(full_qry) all_indices = np.arange(total_len) # 切分逻辑 train_idxs, temp_idxs = train_test_split( all_indices, train_size=TRAIN_RATIO, random_state=42, shuffle=True ) val_relative_ratio = VAL_RATIO / (1.0 - TRAIN_RATIO) val_idxs, test_idxs = train_test_split( temp_idxs, train_size=val_relative_ratio, random_state=42, shuffle=True ) print_master(f"[DUMP] Split sizes -> Train: {len(train_idxs)}, Val: {len(val_idxs)}, Test: {len(test_idxs)}") # 构造 Splits 字典,包含 Subset 和对应的 Global Indices splits = { "train": {"ds": full_qry.select(train_idxs), "indices": train_idxs}, "val": {"ds": full_qry.select(val_idxs), "indices": val_idxs}, "test": {"ds": full_qry.select(test_idxs), "indices": test_idxs} } # 3. 准备 Candidates cand_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "cand") cand_loader = DataLoader( full_cand, batch_size=training_args.per_device_eval_batch_size, collate_fn=cand_collator, num_workers=training_args.dataloader_num_workers ) cand_mid_np, cand_last_np, cand_ids = encode_candidates_both_layers(model, cand_loader, training_args, mid_layer=ee_layer) cand_id2row = {str(cid): i for i, cid in enumerate(cand_ids)} device = training_args.device cand_mid_t = torch.from_numpy(cand_mid_np).to(device=device, dtype=torch.bfloat16) cand_last_t = None # 4. 遍历 Split Dump sum_feat, sum2_feat, n_feat = None, None, 0 scaler_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_phaseA_scaler.json") for split_name, split_info in splits.items(): qry_dataset = split_info["ds"] global_indices = split_info["indices"] if len(qry_dataset) == 0: continue # [DDP Sharding] 同时切分 Dataset 和 Indices if dist.is_initialized(): world_size = dist.get_world_size() per_rank = len(qry_dataset) // world_size start_idx = local_rank * per_rank end_idx = start_idx + per_rank if start_idx >= len(qry_dataset): local_dataset = qry_dataset.select([]) local_indices = [] else: local_dataset = qry_dataset.select(range(start_idx, end_idx)) local_indices = global_indices[start_idx : end_idx] else: local_dataset = qry_dataset local_indices = global_indices qry_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "qry") qry_loader = DataLoader( local_dataset, batch_size=training_args.per_device_eval_batch_size, collate_fn=qry_collator, num_workers=training_args.dataloader_num_workers, shuffle=False # 必须 False 才能对齐 local_indices ) feat_out_path_rank = os.path.join(data_args.encode_output_path, f"{dataset_name}_{split_name}_features.jsonl.rank{local_rank}") print_master(f" -> Dump {split_name} features to {feat_out_path_rank} ...") # 用于追踪当前 Batch 在 local_indices 中的游标 cursor = 0 with open(feat_out_path_rank, "w", encoding="utf-8") as fout: for inputs, infos in tqdm(qry_loader, desc=f"[{split_name.upper()}]", disable=(local_rank!=0)): inputs = batch_to_device(inputs, device) B = inputs["input_ids"].size(0) # [CRITICAL] 获取当前 Batch 对应的 Global ID batch_global_ids = local_indices[cursor : cursor + B] cursor += B # --- A. Forward Mid --- aop_cfg_cur = getattr(model.encoder, "aop_prune_config", None) orig_aop = None if force_no_aop and isinstance(aop_cfg_cur, dict): orig_aop = dict(aop_cfg_cur) aop_off = dict(aop_cfg_cur) aop_off["enabled"] = False setattr(model.encoder, "aop_prune_config", aop_off) with torch.no_grad(), torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=True): out_mid = model.encoder( **inputs, return_dict=True, output_hidden_states=False, stop_at_layer=int(ee_layer), compute_lm_head=False, return_intermediate_state=True ) if orig_aop is not None: setattr(model.encoder, "aop_prune_config", orig_aop) # [FIX] Boolean tensor fix hs_mid = getattr(out_mid, "last_hidden_state", None) if hs_mid is None: hs_mid = out_mid.hidden_states[-1] am_mid = getattr(out_mid, "attention_mask", None) if am_mid is None: am_mid = inputs.get("attention_mask") if hasattr(am_mid, "device") and am_mid.device != hs_mid.device: am_mid = am_mid.to(hs_mid.device) reps_mid_t = model._pooling(hs_mid, am_mid).detach().to(device=device, dtype=torch.bfloat16) # --- B. Build Feats --- rank_global = task_cfg.get("eval_type", "global") == "global" if rank_global: feats_t = build_phaseA_features_global(reps_mid_t, cand_mid_t, am_mid, inputs["input_ids"], model.encoder.config, topk=feat_topk) else: rows_list = [] for b_idx in range(B): cand_local = infos[b_idx]["cand_names"] rows = [cand_id2row.get(str(cid), -1) for cid in cand_local] rows = [r for r in rows if r >= 0] rows_list.append(rows) feats_t = build_phaseA_features_local(reps_mid_t, cand_mid_t, am_mid, inputs["input_ids"], model.encoder.config, rows_list, topk=feat_topk) feats_np = feats_t.detach().float().cpu().numpy() # --- C. Forward Last --- interm = getattr(out_mid, "intermediate_state", None) resume_state = { "hidden_states": interm["hidden_states"].detach(), "attention_mask": interm["attention_mask"].detach(), "position_ids": interm["position_ids"].detach(), "vision_mask": interm.get("vision_mask"), "text_mask": interm.get("text_mask"), "next_layer_idx": int(interm["next_layer_idx"]) } aop_cfg_cur = getattr(model.encoder, "aop_prune_config", None) orig_aop2 = None if force_no_aop and isinstance(aop_cfg_cur, dict): orig_aop2 = dict(aop_cfg_cur) aop_off2 = dict(aop_cfg_cur) aop_off2["enabled"] = False setattr(model.encoder, "aop_prune_config", aop_off2) with torch.no_grad(), torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=True): out_last = model.encoder( return_dict=True, output_hidden_states=False, stop_at_layer=None, resume_state=resume_state, compute_lm_head=False ) if orig_aop2 is not None: setattr(model.encoder, "aop_prune_config", orig_aop2) # [FIX] Boolean tensor fix hs_last = getattr(out_last, "last_hidden_state", None) if hs_last is None: hs_last = out_last.hidden_states[-1] am_last = getattr(out_last, "attention_mask", None) if am_last is None: am_last = resume_state["attention_mask"] if hasattr(am_last, "device") and am_last.device != hs_last.device: am_last = am_last.to(hs_last.device) reps_last_t = model._pooling(hs_last, am_last).detach().to(device=device, dtype=torch.bfloat16) # --- Label Logic --- if rank_global: if cand_last_t is None: cand_last_t = torch.from_numpy(cand_last_np).to(device=device, dtype=torch.bfloat16) sim_mid = (reps_mid_t @ cand_mid_t.T).detach().float().cpu().numpy() sim_last = (reps_last_t @ cand_last_t.T).detach().float().cpu().numpy() y = compute_label_top1_equal_global(sim_mid, sim_last) else: y_list = [] for b_idx in range(B): cand_local = infos[b_idx]["cand_names"] rows = [cand_id2row.get(str(cid), -1) for cid in cand_local] rows = [r for r in rows if r >= 0] if not rows: y_list.append(0) continue c_mid = cand_mid_t[rows] if cand_last_t is None: cand_last_t = torch.from_numpy(cand_last_np).to(device=device, dtype=torch.bfloat16) c_last = cand_last_t[rows] sv_mid = (reps_mid_t[b_idx:b_idx+1] @ c_mid.T)[0].detach().float().cpu().numpy() sv_last = (reps_last_t[b_idx:b_idx+1] @ c_last.T)[0].detach().float().cpu().numpy() y_list.append(int(int(sv_mid.argmax()) == int(sv_last.argmax()))) y = np.array(y_list, dtype=np.int32) # --- D. Write --- # Update Scaler Stats (Train Only) if split_name == "train": if sum_feat is None: sum_feat = feats_np.sum(axis=0) sum2_feat = (feats_np**2).sum(axis=0) else: sum_feat += feats_np.sum(axis=0) sum2_feat += (feats_np**2).sum(axis=0) n_feat += feats_np.shape[0] L_txt = feats_np[:, 5] L_vis = feats_np[:, 6] types = np.where((L_vis > 0) & (L_txt == 0), "I", np.where((L_txt > 0) & (L_vis == 0), "T", "IT")) for b_idx in range(B): row = { "dataset": dataset_name, "split": split_name, "qid": int(batch_global_ids[b_idx]), # Global Index as QID "type": str(types[b_idx]), "feats": feats_np[b_idx].tolist(), "y_exit": int(y[b_idx]), } fout.write(json.dumps(row, ensure_ascii=False) + "\n") # 5. Save Scaler if dist.is_initialized(): dist.barrier() stats_vec = torch.tensor( np.concatenate([sum_feat, sum2_feat, [n_feat]]) if n_feat > 0 else np.zeros(13*2+1), device=device, dtype=torch.float64 ) dist.all_reduce(stats_vec, op=dist.ReduceOp.SUM) sum_feat_all = stats_vec[:13].cpu().numpy() sum2_feat_all = stats_vec[13:26].cpu().numpy() n_feat_all = stats_vec[26].item() else: sum_feat_all = sum_feat sum2_feat_all = sum2_feat n_feat_all = n_feat if local_rank == 0 and n_feat_all > 0: mean = (sum_feat_all / n_feat_all).tolist() var = (sum2_feat_all / n_feat_all - (sum_feat_all / n_feat_all) ** 2) std = [float(max(1e-6, math.sqrt(max(0.0, v)))) for v in var.tolist()] with open(scaler_path, "w", encoding="utf-8") as f: json.dump({"mean": mean, "std": std, "in_dim": len(mean), "n_samples": n_feat_all, "dataset": dataset_name}, f, indent=2) print_master(f"[DUMP] {dataset_name} Scaler saved -> {scaler_path}") if dist.is_initialized(): dist.barrier() if __name__ == "__main__": main()