code_SAS_VLM2Vec / eval_test_time_vision_compression.py
MgGladys's picture
Add files using upload-large-folder tool
ac8b25b verified
import datetime
import logging
import json
import random
import time
import numpy as np
import os
import pickle
import sys
import torch
import torch.distributed as dist
import torch.nn.functional as F
import yaml
import transformers
from torch.utils.data import DataLoader
from tqdm import tqdm
from transformers import HfArgumentParser, AutoConfig, AutoTokenizer
from datasets import Dataset, concatenate_datasets
from datasets.distributed import split_dataset_by_node
from src.arguments_vision_compression import ModelArguments, DataArguments, TrainingArguments
from src.data.collator.eval_collator import MultimodalEvalDataCollator
from src.data.eval_dataset.base_eval_dataset import AutoEvalPairDataset, generate_cand_dataset
from src.eval_utils.metrics import RankingMetrics
from src.model.model_vision_compression import MMEBModel
from src.model.processor import get_backbone_name, load_processor, COLPALI
from src.utils import batch_to_device, print_rank, print_master
logging.basicConfig(level=logging.INFO, format='[%(asctime)s] %(levelname)s [%(name)s:%(lineno)s] %(message)s')
logger = logging.getLogger(__name__)
# --- Global Dictionaries for Hooks (will be cleared before each encode_embeddings call) ---
timing_info = {}
token_info = {
"vision_tokens": 0,
"text_input_tokens": 0, # Refers to the original text token count
"text_output_tokens": 0, # Not directly applicable here as we are encoding, not generating. Will be 0.
"total_llm_input_tokens": 0, # Refers to the total tokens LLM receives (visual + formatted text)
}
# --- Hook Functions Definition ---
def timing_pre_hook(module, input):
module_id = id(module)
if module_id not in timing_info:
timing_info[module_id] = []
timing_info[module_id].append((time.time(), 'pre', module.__class__.__name__))
def timing_post_hook(module, input, output):
module_id = id(module)
if module_id not in timing_info:
# print(f"Warning: No pre-hook data for module {module.__class__.__name__} ({module_id})")
return
timing_info[module_id].append((time.time(), 'post', module.__class__.__name__))
# Collect vision token count (only from Vision Transformer module's post hook)
module_name = module.__class__.__name__
if "vision" in module_name.lower() and "transformer" in module_name.lower():
out = output
# VisionZip 可能返回 tuple: (hidden_states, attn_mean, attn_key)
if isinstance(out, (tuple, list)) and len(out) > 0:
out = out[0]
if torch.is_tensor(out):
# Qwen2.5-VL 的视觉 tower常见输出是 [T, D](batch 内 concat),这里记录总 token 数
if out.dim() == 2:
token_info["vision_tokens"] = out.shape[0]
elif out.dim() == 3:
token_info["vision_tokens"] = out.shape[1]
elif hasattr(out, "last_hidden_state") and torch.is_tensor(out.last_hidden_state):
token_info["vision_tokens"] = out.last_hidden_state.shape[1]
def register_model_hooks(model):
registered_modules = []
core_model = model
# print_master(f"DEBUG: Initial model type in register_model_hooks: {type(model)}")
if hasattr(model, 'encoder') and model.encoder is not None:
print_master(f"DEBUG: model has 'encoder' attribute. Type of model.encoder: {type(model.encoder)}")
else:
print_master("WARNING: Model structure does not have an 'encoder' attribute. Registering hooks directly on top-level modules.")
# Vision module
if hasattr(core_model, 'visual') and core_model.visual is not None:
vision_module = core_model.visual
vision_module.register_forward_pre_hook(timing_pre_hook)
vision_module.register_forward_hook(timing_post_hook)
registered_modules.append(vision_module)
print_master(f"Registered hooks for vision module: {vision_module.__class__.__name__}")
else:
print_master(f"WARNING: No 'visual' attribute found on core_model ({type(core_model)}).")
# Merger module (if inside visual) - it's part of the vision component
if hasattr(core_model, 'visual') and hasattr(core_model.visual, 'merger') and core_model.visual.merger is not None:
merger_module = core_model.visual.merger
merger_module.register_forward_pre_hook(timing_pre_hook)
merger_module.register_forward_hook(timing_post_hook)
registered_modules.append(merger_module)
print_master(f"Registered hooks for merger module: {merger_module.__class__.__name__}")
else:
print_master(f"WARNING: No 'merger' attribute found on core_model.visual ({type(getattr(core_model, 'visual', 'N/A'))}).")
# Language model body
if hasattr(core_model, 'model') and core_model.model is not None:
llm_main_module = core_model.model
llm_main_module.register_forward_pre_hook(timing_pre_hook)
llm_main_module.register_forward_hook(timing_post_hook)
registered_modules.append(llm_main_module)
print_master(f"Registered hooks for LLM main module: {llm_main_module.__class__.__name__}")
else:
print_master(f"WARNING: No 'model' attribute found on core_model ({type(core_model)}).")
# LM Head
if hasattr(core_model, 'lm_head') and core_model.lm_head is not None:
lm_head_module = core_model.lm_head
lm_head_module.register_forward_pre_hook(timing_pre_hook)
lm_head_module.register_forward_hook(timing_post_hook)
registered_modules.append(lm_head_module)
print_master(f"Registered hooks for LM head module: {lm_head_module.__class__.__name__}")
else:
print_master(f"WARNING: No 'lm_head' attribute found on core_model ({type(core_model)}).")
if not registered_modules:
print_master("Warning: No major modules found for hook registration. Check model architecture.")
return registered_modules
def pad_dataset_to_divisible(dataset, world_size):
num_samples = len(dataset)
if num_samples % world_size == 0:
return dataset, num_samples
num_to_add = world_size - (num_samples % world_size)
padded_size = num_samples + num_to_add
padding_data = dataset.select([i % len(dataset) for i in range(num_to_add)])
padded_dataset = concatenate_datasets([dataset, padding_data])
return padded_dataset, padded_size
def encode_embeddings(
model: MMEBModel,
loader: DataLoader,
training_args: TrainingArguments,
model_args: ModelArguments,
full_dataset: Dataset,
encode_side: str,
description: str = "Encoding"
) -> tuple[np.ndarray, list, list, list]: # CHANGED: + list for img_token_masks
"""
Encodes embeddings for a given dataset using the model, handling both standard and
late-interaction models in a DDP-safe manner.
Returns:
- embeddings: np.ndarray
- infos_or_ids: list
- batch_stats_list: list
- img_token_masks: list[None | list[bool]] # NEW
"""
local_rank = dist.get_rank() if dist.is_initialized() else 0
world_size = dist.get_world_size() if dist.is_initialized() else 1
# Check if the model is a late-interaction type
is_late_interaction = (model_args.model_backbone == COLPALI)
local_embeds = []
local_gt_infos = []
local_max_len = 0
# --- New: List to store statistics for each batch ---
batch_stats_list = []
# --- NEW: Collect image token masks locally ---
local_img_token_masks = [] # 每个样本一个元素:None 或 [bool, ...]
model.eval()
# Register hooks for the model once per encode_embeddings call
registered_hooks = register_model_hooks(model)
# --- NEW: helpers to取mask并序列化 ---
def _search_key(obj, key: str):
# 递归搜索 dict/list/tuple,找到指定 key
if isinstance(obj, dict):
if key in obj:
return obj[key]
for v in obj.values():
r = _search_key(v, key)
if r is not None:
return r
elif isinstance(obj, (list, tuple)):
for v in obj:
r = _search_key(v, key)
if r is not None:
return r
return None
def _to_serializable_mask_list(mask_list, batch_size: int):
# 将模型返回的 mask(list/tensor/ndarray/None)转成 [None | list[bool]] * B
if mask_list is None:
return [None] * batch_size
out = []
if isinstance(mask_list, (list, tuple)):
for m in mask_list:
if m is None:
out.append(None)
elif torch.is_tensor(m):
out.append(m.detach().cpu().tolist())
elif isinstance(m, np.ndarray):
out.append(m.tolist())
else:
# already python list/bool
out.append(m)
elif torch.is_tensor(mask_list):
# 若是 2D 张量(B, L),直接 tolist() -> list[list[bool/int]]
out = mask_list.detach().cpu().tolist()
elif isinstance(mask_list, np.ndarray):
out = mask_list.tolist()
else:
# 未知类型,保守返回 None 占位
out = [None] * batch_size
# 长度对齐 batch_size
if isinstance(out, list):
if len(out) < batch_size:
out = out + [None] * (batch_size - len(out))
elif len(out) > batch_size:
out = out[:batch_size]
return out
with torch.no_grad():
for inputs, dataset_info in tqdm(loader, desc=f"{description} (rank {local_rank})", disable=local_rank > 0):
# --- Reset statistics for each inference pass ---
timing_info.clear()
token_info["vision_tokens"] = 0
token_info["text_input_tokens"] = 0
token_info["text_output_tokens"] = 0
token_info["total_llm_input_tokens"] = 0
inputs = batch_to_device(inputs, training_args.device)
current_batch_size = inputs['input_ids'].shape[0] if 'input_ids' in inputs and inputs['input_ids'] is not None else 1
with torch.autocast(enabled=True, dtype=torch.bfloat16, device_type="cuda"):
start_inference_time = time.time()
if encode_side == "qry":
output = model(qry=inputs)
# torch.set_printoptions(threshold=10000)
# print('output:', output)
# exit()
reps = output["qry_reps"].detach()
local_gt_infos.extend(dataset_info)
else:
output = model(tgt=inputs)
reps = output["tgt_reps"].detach()
local_gt_infos.extend([info["cand_name"] for info in dataset_info])
end_inference_time = time.time()
# --- NEW: 提取并保存本 batch 的 image_token_bool_masks ---
# 期望 MMEBModel 的 output 中直接或间接包含 'image_token_bool_masks'
img_masks_raw = None
if isinstance(output, dict):
img_masks_raw = _search_key(output, "image_token_bool_masks")
# 可选:若你在 MMEBModel 上挂了属性,也可以尝试读取
if img_masks_raw is None and hasattr(model, "image_token_bool_masks"):
img_masks_raw = getattr(model, "image_token_bool_masks")
img_masks_serializable = _to_serializable_mask_list(img_masks_raw, current_batch_size)
local_img_token_masks.extend(img_masks_serializable)
# --- Update total LLM input tokens after the model call ---
if 'input_ids' in inputs and inputs['input_ids'] is not None:
token_info["total_llm_input_tokens"] = inputs['input_ids'].shape[1]
token_info["text_input_tokens"] = token_info["total_llm_input_tokens"] - token_info["vision_tokens"]
token_info["text_input_tokens"] = max(0, token_info["text_input_tokens"])
# --- Collect and Store Batch Statistics ---
batch_inference_time = end_inference_time - start_inference_time
current_batch_stats = {
"batch_size": current_batch_size,
"total_inference_time_seconds": batch_inference_time,
"module_inference_times": {},
"token_counts": {
"visual_tokens": token_info["vision_tokens"],
"language_input_tokens_raw": token_info["text_input_tokens"],
"llm_total_input_tokens": token_info["total_llm_input_tokens"],
"language_output_tokens": token_info["text_output_tokens"],
}
}
# Calculate and store module timings for the current batch
for module_obj in registered_hooks:
module_id = id(module_obj)
module_name = module_obj.__class__.__name__
times = timing_info.get(module_id, [])
durations = []
pre_times = {}
for t, event_type, _ in times:
if event_type == 'pre':
pre_times[module_id] = t
elif event_type == 'post' and module_id in pre_times:
duration = t - pre_times.pop(module_id)
durations.append(duration)
if durations:
current_batch_stats["module_inference_times"][module_name] = {
"total": sum(durations),
"count": len(durations),
"avg": sum(durations) / len(durations)
}
else:
current_batch_stats["module_inference_times"][module_name] = {
"total": 0.0,
"count": 0,
"avg": 0.0
}
batch_stats_list.append(current_batch_stats)
# --- Debug prints (optional) ---
print_rank(f"\n--- Inference Statistics for {encode_side} batch (Rank {local_rank}) ---")
print_rank(f"Batch Inference took: {batch_inference_time:.4f} seconds")
print_rank("--- Module Inference Timing Statistics ---")
for module_name, stats in current_batch_stats["module_inference_times"].items():
print_rank(f"**{module_name}**: Total: {stats['total']:.6f}s, Count: {stats['count']}, Avg: {stats['avg']:.6f}s")
print_rank("--- Token Count Statistics ---")
print_rank(f"**视觉 token 数量**: {current_batch_stats['token_counts']['visual_tokens']}")
print_rank(f"**语言输入 token 数量 (仅原始文本)**: {current_batch_stats['token_counts']['language_input_tokens_raw']}")
print_rank(f"**LLM总输入 token 数量 (包含视觉 + 格式化文本)**: {current_batch_stats['token_counts']['llm_total_input_tokens']}")
print_rank(f"**语言输出 token 数量**: {current_batch_stats['token_counts']['language_output_tokens']}")
if is_late_interaction and reps.dim() == 3:
local_max_len = max(local_max_len, reps.shape[1])
local_embeds.append(reps)
if not local_embeds:
# Handle cases where a rank gets no data
return np.array([]), [], [], [] # CHANGED: 4个返回值
# === DDP Synchronization and Padding for Late-Interaction Models ===
if is_late_interaction:
if dist.is_initialized():
# 1: global max length
local_max_len_tensor = torch.tensor(local_max_len, device=training_args.device)
dist.all_reduce(local_max_len_tensor, op=dist.ReduceOp.MAX)
global_max_len = local_max_len_tensor.item()
else:
global_max_len = local_max_len
# 2: pad to global max length
padded_embeds = []
for reps_batch in local_embeds:
if reps_batch.dim() == 3:
B, L, H = reps_batch.shape
padding_size = global_max_len - L
padded_batch = F.pad(reps_batch, (0, 0, 0, padding_size), "constant", 0)
padded_embeds.append(padded_batch)
else:
padded_embeds.append(reps_batch)
embeds_tensor = torch.cat(padded_embeds, dim=0).contiguous()
else:
embeds_tensor = torch.cat(local_embeds, dim=0).contiguous()
# === Gather embeddings and keys from all ranks ===
if dist.is_initialized() and full_dataset.num_rows >= world_size:
print_master(f"Gathering {encode_side} embeddings across all ranks...")
# tensor gather
output_shape = list(embeds_tensor.shape)
output_shape[0] = full_dataset.num_rows
embeds_tensor = embeds_tensor.to(training_args.device)
gathered_embeds_tensor = torch.empty(output_shape, dtype=embeds_tensor.dtype, device=training_args.device)
dist.all_gather_into_tensor(gathered_embeds_tensor, embeds_tensor)
final_embeddings = gathered_embeds_tensor.cpu().float().numpy()
# object gather for infos and stats
gathered_gt_infos = [None for _ in range(world_size)]
dist.all_gather_object(gathered_gt_infos, local_gt_infos)
all_gt_infos = [key for rank_keys in gathered_gt_infos for key in rank_keys]
gathered_batch_stats = [None for _ in range(world_size)]
dist.all_gather_object(gathered_batch_stats, batch_stats_list)
all_batch_stats = [stats for rank_stats in gathered_batch_stats for stats in rank_stats]
# --- NEW: gather masks ---
gathered_masks = [None for _ in range(world_size)]
dist.all_gather_object(gathered_masks, local_img_token_masks)
all_img_token_masks = [m for rank_list in gathered_masks for m in rank_list]
else:
all_gt_infos = local_gt_infos
final_embeddings = embeds_tensor.cpu().float().numpy()
all_batch_stats = batch_stats_list
all_img_token_masks = local_img_token_masks # NEW
return final_embeddings, all_gt_infos, all_batch_stats, all_img_token_masks # CHANGED
def main():
if "RANK" in os.environ and dist.is_available() and not dist.is_initialized():
dist.init_process_group(backend="nccl", timeout=datetime.timedelta(minutes=60))
local_rank = dist.get_rank() if dist.is_initialized() else 0
world_size = dist.get_world_size() if dist.is_initialized() else 1
# DEBUG PRINTS for Distributed Setup
print_master("Distributed init debug info:")
print_master(f"RANK: {os.environ.get('RANK')}")
print_master(f"LOCAL_RANK: {os.environ.get('LOCAL_RANK')}")
print_master(f"WORLD_SIZE: {os.environ.get('WORLD_SIZE')}")
print_master(f"MASTER_ADDR: {os.environ.get('MASTER_ADDR')}")
print_master(f"MASTER_PORT: {os.environ.get('MASTER_PORT')}")
if dist.is_initialized():
print_rank(f"dist.get_rank(): {dist.get_rank()}")
print_rank(f"dist.get_world_size(): {dist.get_world_size()}")
for arg in sys.argv:
if arg.startswith("--local-rank="):
rank = arg.split("=")[1]
sys.argv.remove(arg)
sys.argv.append('--local_rank')
sys.argv.append(rank)
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
if not hasattr(model_args, "vision_compression") or model_args.vision_compression is None:
model_args.vision_compression = "token_pooling"
model_args: ModelArguments
data_args: DataArguments
training_args: TrainingArguments
os.makedirs(data_args.encode_output_path, exist_ok=True)
# --- Model Loading ---
hf_config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
if not getattr(model_args, "model_backbone", None):
model_backbone = get_backbone_name(hf_config=hf_config, model_type=model_args.model_type)
setattr(model_args, 'model_backbone', model_backbone)
setattr(training_args, 'model_backbone', model_backbone)
print_master(f'Model Backbone: {model_args.model_backbone}')
# --- DDP-Safe Model Loading ---
# Step 1: Only the master process (rank 0) downloads the model.
if local_rank == 0:
processor = load_processor(model_args, data_args)
model = MMEBModel.load(model_args, is_trainable=False, processor=processor)
print_master(f"[rank=0] Loading the model from Huggingface: {model_args.model_name}...")
# Step 2: All processes wait here. The non-master processes will pause
# until the master process (rank 0) finishes downloading and exits this barrier.
if torch.distributed.is_initialized():
torch.distributed.barrier()
# Step 3: Now that the model is cached, the non-master processes load it from the local cache.
if local_rank != 0:
print_rank(f"Loading the model from cache...")
processor = load_processor(model_args, data_args)
time.sleep(random.randint(2 * local_rank, 3 * local_rank))
model = MMEBModel.load(model_args, is_trainable=False, processor=processor)
model.eval()
model = model.to(training_args.device, dtype=torch.bfloat16)
with open(data_args.dataset_config, 'r') as yaml_file:
dataset_configs = yaml.safe_load(yaml_file)
# --- Main Evaluation Loop ---
for dataset_idx, (dataset_name, task_config) in enumerate(dataset_configs.items()):
# Initialize task-level statistics accumulators for QUERY
query_total_stats = {
"total_inference_time_seconds": 0.0,
"module_inference_times": {
"Qwen2VisionTransformerPretrainedModel": {"total": 0.0, "count": 0},
"PatchMerger": {"total": 0.0, "count": 0},
"Qwen2VLModel": {"total": 0.0, "count": 0},
"Linear": {"total": 0.0, "count": 0},
},
"token_counts": {
"visual_tokens": 0,
"language_input_tokens_raw": 0,
"llm_total_input_tokens": 0,
"language_output_tokens": 0,
},
"data_point_count": 0 # Number of image-text pairs processed
}
# Initialize task-level statistics accumulators for CANDIDATE
cand_total_stats = {
"total_inference_time_seconds": 0.0,
"module_inference_times": {
"Qwen2VisionTransformerPretrainedModel": {"total": 0.0, "count": 0},
"PatchMerger": {"total": 0.0, "count": 0},
"Qwen2VLModel": {"total": 0.0, "count": 0},
"Linear": {"total": 0.0, "count": 0},
},
"token_counts": {
"visual_tokens": 0,
"language_input_tokens_raw": 0,
"llm_total_input_tokens": 0,
"language_output_tokens": 0,
},
"data_point_count": 0 # Number of image-text pairs processed
}
if dist.is_initialized():
dist.barrier()
print_master(f"\n--- Evaluating {dataset_name} ---")
query_embed_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_qry")
cand_embed_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_tgt")
dataset_info_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_info.jsonl")
# New: Define distinct paths for query and candidate inference statistics output
query_inference_stats_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_qry_inference_stats.json")
cand_inference_stats_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_cand_inference_stats.json")
do_query = not os.path.exists(query_embed_path) or not os.path.exists(dataset_info_path)
do_cand = not os.path.exists(cand_embed_path)
if do_query or do_cand:
if data_args.data_basedir is not None:
# Construct full paths for data files if --data_basedir is provided
for key in ["image_root", "video_root", "frame_root", "clip_root", "data_path"]:
if data_args.data_basedir and task_config.get(key):
task_config[key] = os.path.join(data_args.data_basedir, task_config[key])
full_eval_qry_dataset, corpus = AutoEvalPairDataset.instantiate(model_args=model_args, data_args=data_args, **task_config)
full_eval_cand_dataset = generate_cand_dataset(full_eval_qry_dataset, corpus)
eval_qry_dataset, eval_cand_dataset = full_eval_qry_dataset, full_eval_cand_dataset
# Pad datasets to be divisible by world_size before splitting
if dist.is_initialized():
padded_qry_dataset, _ = pad_dataset_to_divisible(full_eval_qry_dataset, world_size)
padded_cand_dataset, _ = pad_dataset_to_divisible(full_eval_cand_dataset, world_size)
eval_qry_dataset = split_dataset_by_node(padded_qry_dataset, rank=local_rank, world_size=world_size)
eval_cand_dataset = split_dataset_by_node(padded_cand_dataset, rank=local_rank, world_size=world_size)
else:
padded_qry_dataset, padded_cand_dataset = full_eval_qry_dataset, full_eval_cand_dataset
# --- 1. Compute Query Embeddings ---
if do_query:
print_master("Encoding queries...")
eval_qry_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "qry")
eval_qry_loader = DataLoader(eval_qry_dataset, batch_size=training_args.per_device_eval_batch_size, collate_fn=eval_qry_collator, num_workers=training_args.dataloader_num_workers)
# Modified: capture batch_stats_list
query_embeds, gt_infos, qry_batch_stats, qry_img_masks = encode_embeddings(model, eval_qry_loader, training_args, model_args, padded_qry_dataset, encode_side="qry", description=f"Queries for {dataset_name}")
# Accumulate query statistics
for batch_stat in qry_batch_stats:
batch_size = batch_stat["batch_size"]
query_total_stats["total_inference_time_seconds"] += batch_stat["total_inference_time_seconds"]
for module_name, module_stats in batch_stat["module_inference_times"].items():
if module_name in query_total_stats["module_inference_times"]:
query_total_stats["module_inference_times"][module_name]["total"] += module_stats["total"]
query_total_stats["module_inference_times"][module_name]["count"] += module_stats["count"]
query_total_stats["token_counts"]["visual_tokens"] += batch_stat["token_counts"]["visual_tokens"] * batch_size
query_total_stats["token_counts"]["language_input_tokens_raw"] += batch_stat["token_counts"]["language_input_tokens_raw"] * batch_size
query_total_stats["token_counts"]["llm_total_input_tokens"] += batch_stat["token_counts"]["llm_total_input_tokens"] * batch_size
query_total_stats["token_counts"]["language_output_tokens"] += batch_stat["token_counts"]["language_output_tokens"] * batch_size
query_total_stats["data_point_count"] += batch_size # Accumulate the number of processed items
query_embeds = query_embeds[:len(full_eval_qry_dataset)]
gt_infos = gt_infos[:len(full_eval_qry_dataset)]
if local_rank == 0:
with open(query_embed_path, 'wb') as f:
pickle.dump(query_embeds, f)
with open(dataset_info_path, 'w') as f:
for info in gt_infos:
f.write(json.dumps(info) + '\n')
print_master(f"Saved query embeddings to {query_embed_path}")
qry_img_masks_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_qry_img_token_masks.jsonl")
with open(qry_img_masks_path, 'w', encoding='utf-8') as f:
for i, m in enumerate(qry_img_masks[:len(full_eval_qry_dataset)]):
f.write(json.dumps({"index": i, "mask": m}, ensure_ascii=False) + "\n")
print_master(f"Saved query image token masks to {qry_img_masks_path}")
# Save query-specific inference statistics
if query_total_stats["data_point_count"] > 0:
final_query_stats = {
"task_name": dataset_name,
"encode_side": "query",
"data_point_count": query_total_stats["data_point_count"],
"inference_times": {
"total_inference_time_seconds": query_total_stats["total_inference_time_seconds"],
"avg_inference_time_per_item_seconds": query_total_stats["total_inference_time_seconds"] / query_total_stats["data_point_count"],
"module_average_times_per_call": {},
"module_total_times_seconds": {},
"module_calls_count": {},
},
"token_counts": {
"total_visual_tokens": query_total_stats["token_counts"]["visual_tokens"],
"avg_visual_tokens_per_item": query_total_stats["token_counts"]["visual_tokens"] / query_total_stats["data_point_count"],
"total_language_input_tokens_raw": query_total_stats["token_counts"]["language_input_tokens_raw"],
"avg_language_input_tokens_raw_per_item": query_total_stats["token_counts"]["language_input_tokens_raw"] / query_total_stats["data_point_count"],
"total_llm_total_input_tokens": query_total_stats["token_counts"]["llm_total_input_tokens"],
"avg_llm_total_input_tokens_per_item": query_total_stats["token_counts"]["llm_total_input_tokens"] / query_total_stats["data_point_count"],
"total_language_output_tokens": query_total_stats["token_counts"]["language_output_tokens"],
"avg_language_output_tokens_per_item": query_total_stats["token_counts"]["language_output_tokens"] / query_total_stats["data_point_count"],
}
}
for module_name, stats in query_total_stats["module_inference_times"].items():
final_query_stats["inference_times"]["module_total_times_seconds"][module_name] = stats["total"]
final_query_stats["inference_times"]["module_calls_count"][module_name] = stats["count"]
if stats["count"] > 0:
final_query_stats["inference_times"]["module_average_times_per_call"][module_name] = stats["total"] / stats["count"]
else:
final_query_stats["inference_times"]["module_average_times_per_call"][module_name] = 0.0
with open(query_inference_stats_path, 'w', encoding='utf-8') as f:
json.dump(final_query_stats, f, ensure_ascii=False, indent=4)
print_master(f"Query inference statistics for {dataset_name} saved to: {query_inference_stats_path}")
else:
print_master(f"No query data processed for {dataset_name}, skipping query inference statistics output.")
if dist.is_initialized():
dist.barrier()
# --- 2. Compute Candidate Embeddings ---
if do_cand:
print_master("Encoding candidates...")
eval_cand_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "cand")
eval_cand_loader = DataLoader(eval_cand_dataset, batch_size=training_args.per_device_eval_batch_size, collate_fn=eval_cand_collator, num_workers=training_args.dataloader_num_workers)
# Modified: capture batch_stats_list
cand_embeds, all_cand_ids, cand_batch_stats, cand_img_masks = encode_embeddings(model, eval_cand_loader, training_args, model_args, padded_cand_dataset, encode_side="cand", description=f"Candidates for {dataset_name}")
# Accumulate candidate statistics (similar logic as query)
for batch_stat in cand_batch_stats:
batch_size = batch_stat["batch_size"]
cand_total_stats["total_inference_time_seconds"] += batch_stat["total_inference_time_seconds"]
for module_name, module_stats in batch_stat["module_inference_times"].items():
if module_name in cand_total_stats["module_inference_times"]:
cand_total_stats["module_inference_times"][module_name]["total"] += module_stats["total"]
cand_total_stats["module_inference_times"][module_name]["count"] += module_stats["count"]
cand_total_stats["token_counts"]["visual_tokens"] += batch_stat["token_counts"]["visual_tokens"] * batch_size
cand_total_stats["token_counts"]["language_input_tokens_raw"] += batch_stat["token_counts"]["language_input_tokens_raw"] * batch_size
cand_total_stats["token_counts"]["llm_total_input_tokens"] += batch_stat["token_counts"]["llm_total_input_tokens"] * batch_size
cand_total_stats["token_counts"]["language_output_tokens"] += batch_stat["token_counts"]["language_output_tokens"] * batch_size
cand_total_stats["data_point_count"] += batch_size # Accumulate the number of processed items
cand_embeds = cand_embeds[:len(full_eval_cand_dataset)]
all_cand_ids = all_cand_ids[:len(full_eval_cand_dataset)]
if local_rank == 0:
cand_embed_dict = {cand_id: embed for cand_id, embed in zip(all_cand_ids, cand_embeds)}
with open(cand_embed_path, 'wb') as f: pickle.dump(cand_embed_dict, f)
print_master(f"Saved candidate embeddings to {cand_embed_path}")
cand_img_masks_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_cand_img_token_masks.jsonl")
with open(cand_img_masks_path, 'w', encoding='utf-8') as f:
for cid, m in zip(all_cand_ids[:len(full_eval_cand_dataset)], cand_img_masks[:len(full_eval_cand_dataset)]):
f.write(json.dumps({"cand_id": str(cid), "mask": m}, ensure_ascii=False) + "\n")
print_master(f"Saved candidate image token masks to {cand_img_masks_path}")
# Save candidate-specific inference statistics
if cand_total_stats["data_point_count"] > 0:
final_cand_stats = {
"task_name": dataset_name,
"encode_side": "candidate",
"data_point_count": cand_total_stats["data_point_count"],
"inference_times": {
"total_inference_time_seconds": cand_total_stats["total_inference_time_seconds"],
"avg_inference_time_per_item_seconds": cand_total_stats["total_inference_time_seconds"] / cand_total_stats["data_point_count"],
"module_average_times_per_call": {},
"module_total_times_seconds": {},
"module_calls_count": {},
},
"token_counts": {
"total_visual_tokens": cand_total_stats["token_counts"]["visual_tokens"],
"avg_visual_tokens_per_item": cand_total_stats["token_counts"]["visual_tokens"] / cand_total_stats["data_point_count"],
"total_language_input_tokens_raw": cand_total_stats["token_counts"]["language_input_tokens_raw"],
"avg_language_input_tokens_raw_per_item": cand_total_stats["token_counts"]["language_input_tokens_raw"] / cand_total_stats["data_point_count"],
"total_llm_total_input_tokens": cand_total_stats["token_counts"]["llm_total_input_tokens"],
"avg_llm_total_input_tokens_per_item": cand_total_stats["token_counts"]["llm_total_input_tokens"] / cand_total_stats["data_point_count"],
"total_language_output_tokens": cand_total_stats["token_counts"]["language_output_tokens"],
"avg_language_output_tokens_per_item": cand_total_stats["token_counts"]["language_output_tokens"] / cand_total_stats["data_point_count"],
}
}
for module_name, stats in cand_total_stats["module_inference_times"].items():
final_cand_stats["inference_times"]["module_total_times_seconds"][module_name] = stats["total"]
final_cand_stats["inference_times"]["module_calls_count"][module_name] = stats["count"]
if stats["count"] > 0:
final_cand_stats["inference_times"]["module_average_times_per_call"][module_name] = stats["total"] / stats["count"]
else:
final_cand_stats["inference_times"]["module_average_times_per_call"][module_name] = 0.0
with open(cand_inference_stats_path, 'w', encoding='utf-8') as f:
json.dump(final_cand_stats, f, ensure_ascii=False, indent=4)
print_master(f"Candidate inference statistics for {dataset_name} saved to: {cand_inference_stats_path}")
else:
print_master(f"No candidate data processed for {dataset_name}, skipping candidate inference statistics output.")
if dist.is_initialized():
dist.barrier()
# --- 3. Compute Scores (on master rank only) ---
score_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_score.json")
####################################################################################
pred_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_pred.jsonl")
score_detail_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_score_details.jsonl") # 新文件,存相似度分数
def append_score_detail(score_detail_list, qid, ranked_indices, score_vector, cand_ids, labels):
"""追加一个 query 的候选分数详情"""
score_detail_list.append({
"qid": int(qid),
"cand_scores": [
{"cand_id": str(cand_ids[i]), "score": float(score_vector[i])}
for i in ranked_indices
],
"label": labels
})
####################################################################################
if local_rank == 0:
if os.path.exists(score_path):
try:
with open(score_path, "r") as f:
score_dict = json.load(f)
print_master(f"Score of {dataset_name} (loaded from previous run): {score_path}")
formatted = {k: f"{v:.4f}" for k, v in score_dict.items()}
print_master(formatted)
# No `continue` here, as we want to ensure other files are processed/generated
except Exception as e:
print_master(f"Failed to load score for {dataset_name}, proceeding to recompute. Error: {e}")
# Proceed with score computation if not loaded or failed to load
with open(query_embed_path, 'rb') as f: qry_embeds = pickle.load(f)
with open(cand_embed_path, 'rb') as f: cand_embed_dict = pickle.load(f)
gt_infos = [json.loads(l) for l in open(dataset_info_path)]
pred_dicts = []
score_detail_dicts = []###################################
rank_against_all_candidates = task_config.get("eval_type", "global") == "global"
# if rank_against_all_candidates:
# cand_keys = list(cand_embed_dict.keys())
# cand_embeds = np.stack([cand_embed_dict[key] for key in cand_keys])
# # Handle late-interaction scoring
# if qry_embeds.ndim == 3: # Query: [N_q, L_q, H] | Candidate: [N_c, L_c, H]
# qry_embed = torch.from_numpy(qry_embeds)
# cand_embeds = [torch.from_numpy(np.array(t)) for t in cand_embeds]
# scores = processor.score(qry_embed, cand_embeds, batch_size=64) # use ColPali score function
# ranked_candids = torch.argsort(-scores, dim=1).cpu().numpy().tolist()
# scores = scores.cpu().numpy()
# else: # Dense
# cosine_scores = np.dot(qry_embeds, cand_embeds.T)
# ranked_candids = np.argsort(-cosine_scores, axis=1)
#####################################################
if rank_against_all_candidates:
cand_keys = list(cand_embed_dict.keys())
cand_embeds = np.stack([cand_embed_dict[key] for key in cand_keys])
if qry_embeds.ndim == 3: # Late-interaction
qry_embed_t = torch.from_numpy(qry_embeds)
cand_embeds_t = [torch.from_numpy(np.array(t)) for t in cand_embeds]
sim_matrix = processor.score(qry_embed_t, cand_embeds_t, batch_size=64).cpu().numpy() # [N_q, N_c]
else: # Dense
sim_matrix = np.dot(qry_embeds, cand_embeds.T) # [N_q, N_c]
ranked_candids = np.argsort(-sim_matrix, axis=1)
#########################################################
for qid, (ranked_candid, gt_info) in tqdm(enumerate(zip(ranked_candids, gt_infos)), desc=f"Calculating scores for {dataset_name}"):
rel_docids = gt_info["label_name"] if isinstance(gt_info["label_name"], list) else [gt_info["label_name"]]
rel_scores = gt_info["rel_scores"] if "rel_scores" in gt_info else None
assert rel_scores is None or len(rel_docids) == len(rel_scores)
pred_dicts.append({
"prediction": [cand_keys[i] for i in ranked_candid],
"label": rel_docids,
"rel_scores": rel_scores,
})
################################# 新增:详细相似度字典
append_score_detail(score_detail_dicts, qid, ranked_candid, sim_matrix[qid], cand_keys, rel_docids)
########################################
# else:
# for qid, (qry_embed, gt_info) in tqdm(enumerate(zip(qry_embeds, gt_infos)), desc=f"Calculating scores for {dataset_name}"):
# cand_embeds = np.stack([cand_embed_dict[key] for key in gt_info["cand_names"]])
# if qry_embeds.ndim == 3: # Query: [N_q, L_q, H] | Candidate: [N_c, L_c, H]
# qry_embed = torch.from_numpy(np.array(qry_embed)).unsqueeze(0)
# cand_embeds = [torch.from_numpy(np.array(t)) for t in cand_embeds]
# scores = processor.score(qry_embed, cand_embeds, batch_size=1024) # use ColPali score function
# ranked_candids = torch.argsort(-scores, dim=1).cpu().numpy().tolist()[0]
# else:
# cosine_score = np.dot(qry_embed, cand_embeds.T)
# ranked_candids = np.argsort(-cosine_score)
# rel_docids = gt_info["label_name"] if isinstance(gt_info["label_name"], list) else [gt_info["label_name"]]
# rel_scores = gt_info["rel_scores"] if "rel_scores" in gt_info else None
# assert rel_scores is None or len(rel_docids) == len(rel_scores)
# pred_dicts.append({
# "prediction": [gt_info["cand_names"][i] for i in ranked_candids],
# "label": rel_docids,
# "rel_scores": rel_scores,
# })
#######################################################################
else: # 非全局
for qid, (qry_embed, gt_info) in tqdm(enumerate(zip(qry_embeds, gt_infos)), desc=f"Calculating scores for {dataset_name}"):
cand_ids_local = gt_info["cand_names"]
cand_embeds = np.stack([cand_embed_dict[key] for key in cand_ids_local])
if qry_embeds.ndim == 3: # Late-interaction
qry_embed_t = torch.from_numpy(np.array(qry_embed)).unsqueeze(0) # [1, Lq, H]
cand_embeds_t = [torch.from_numpy(np.array(t)) for t in cand_embeds]
sim_vec = processor.score(qry_embed_t, cand_embeds_t, batch_size=1024).cpu().numpy()[0] # [N_c]
else: # Dense
sim_vec = np.dot(qry_embed, cand_embeds.T) # [N_c]
ranked_indices = np.argsort(-sim_vec)
rel_docids = gt_info["label_name"] if isinstance(gt_info["label_name"], list) else [gt_info["label_name"]]
rel_scores = gt_info["rel_scores"] if "rel_scores" in gt_info else None
assert rel_scores is None or len(rel_docids) == len(rel_scores)
pred_dicts.append({
"prediction": [cand_ids_local[i] for i in ranked_indices],
"label": rel_docids,
"rel_scores": rel_scores,
})
# 新增:分数详情
append_score_detail(score_detail_dicts, qid, ranked_indices, sim_vec, cand_ids_local, rel_docids)
########################################## 保存预测和分数
with open(score_detail_path, "w") as f: # 新增
for detail in score_detail_dicts:
f.write(json.dumps(detail) + '\n')
print_master(f"Detailed score file saved to: {score_detail_path}")
metrics_to_report = task_config["metrics"] if task_config.get("metrics", None) is not None else ["hit", "ndcg", "precision", "recall", "f1", "map", "mrr"]
metrics = RankingMetrics(metrics_to_report)
score_dict = metrics.evaluate(pred_dicts)
formatted = {k: f"{v:.4f}" for k, v in score_dict.items()}
score_dict["num_pred"] = len(pred_dicts)
score_dict["num_data"] = len(gt_infos)
print_master(f"Score of {dataset_name}:")
print_master(formatted)
print_master(f"Outputting final score to: {score_path}")
with open(score_path, "w") as f:
json.dump(score_dict, f, indent=4)
with open(pred_path, "w") as f:
for pred in pred_dicts:
f.write(json.dumps(pred) + '\n')
####################################################################
score_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_score.json")
pred_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_pred.jsonl")
metrics_to_report = task_config["metrics"] if task_config.get("metrics", None) is not None else ["hit", "ndcg", "precision", "recall", "f1", "map", "mrr"]
metrics = RankingMetrics(metrics_to_report)
score_dict = metrics.evaluate(pred_dicts)
formatted = {k: f"{v:.4f}" for k, v in score_dict.items()}
score_dict["num_pred"] = len(pred_dicts)
score_dict["num_data"] = len(gt_infos)
print_master(f"Score of {dataset_name}:")
print_master(formatted)
print_master(f"Outputting final score to: {score_path}")
with open(score_path, "w") as f:
json.dump(score_dict, f, indent=4)
with open(pred_path, "w") as f:
for pred in pred_dicts:
f.write(json.dumps(pred) + '\n')
if __name__ == '__main__':
main()