File size: 9,723 Bytes
0a937d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 |
# adopted from https://www.kaggle.com/code/snnclsr/learning-rate-schedulers
# adopted from https://gist.github.com/davidgilbertson/2a6ac54ad6629a37e8f4d0539f7ef7bc
import timeit
import math
from typing import Sequence, Mapping, Literal, Callable
import torch
import transformers
from torch.optim.lr_scheduler import LambdaLR
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LRScheduler
from transformers import AutoModel
class KeyframeLR(LRScheduler):
def __init__(
self,
optimizer: Optimizer,
frames,
end: float,
units: Literal["percent", "steps", "time"] = "percent",
):
"""
Define a PyTorch LR scheduler with keyframes
Parameters
----------
optimizer
torch.optim optimizer
frames
A sequence of mappings (e.g. list of dicts), each one either specifying a
position/lr or transition.
Positions should be defined like `{"position": 0.2, "lr": 0.1}`.
As a shorthand, you can also provide a list or tuple with the position/lr
When units are `"steps"`, define the position in steps, else define the position as
a float in the interval [0, 1].
Transitions can optionally be inserted between positions, e.g. `{"transform": "cos"}`
If no transition is defined between two positions, `linear` will be used.
Options are `"linear"` and `"cos"`, or a function with the signature:
`func(last_lr, start_frame, end_frame, position, scheduler)`
As a shorthand, you can also provide just the string or callable
end
When `units` are `"time"`, this should be the expected run-time in seconds
Otherwise, this should be the maximum number of times you plan to call .step()
units
"percent", "steps", or "time". Default is "percent"
"""
self.end = end
self.units = units
self.frames = self.parse_frames(frames)
self.last_lr = 0
self.start_time = timeit.default_timer() if units == "time" else None
super().__init__(optimizer=optimizer)
def parse_frames(self, user_frames):
frames = []
previous_pos = -1
end_pos = self.end if self.units == "steps" else 1
unpacked_frames = []
for frame in user_frames:
# Allow shorthand for position
if isinstance(frame, Sequence) and len(frame) == 2:
frame = {"position": frame[0], "lr": frame[1]}
# Allow shorthand for transition
if isinstance(frame, (str, Callable)):
frame = {"transition": frame}
# Allow for "position": "end"
if frame.get("position", None) == "end":
frame["position"] = end_pos
unpacked_frames.append(frame)
for i, frame in enumerate(unpacked_frames):
first_frame = i == 0
last_frame = i == len(unpacked_frames) - 1
if first_frame:
if "position" in frame and frame["position"] != 0:
frames.append({"position": 0, "lr": 0})
frames.append({"transition": "linear"})
if "transition" in frame:
frames.append({"position": 0, "lr": 0})
frames.append(frame)
if "position" in frame:
position = frame["position"]
assert (
position >= previous_pos
), f"position {position!r} is not bigger than {previous_pos}"
assert (
position <= end_pos
), f"position {position} is bigger than end value {end_pos}"
previous_pos = position
if not last_frame:
next_frame = unpacked_frames[i + 1]
if "position" in next_frame:
frames.append({"transition": "linear"})
if last_frame:
if "position" in frame and frame["position"] < end_pos:
frames.append({"transition": "linear"})
frames.append({"position": end_pos, "lr": 0})
if "transition" in frame:
frames.append({"position": end_pos, "lr": 0})
return frames
@staticmethod
def interpolate(a, b, pct):
return (1 - pct) * a + pct * b
def interpolate_frames(self, start_frame, transition, end_frame, position):
pos_range = end_frame["position"] - start_frame["position"]
pct_of_range = (position - start_frame["position"]) / pos_range
if transition == "linear":
return self.interpolate(
start_frame["lr"],
end_frame["lr"],
pct_of_range,
)
if transition == "cos":
pct_of_range_cos = 1 - (1 + math.cos(pct_of_range * math.pi)) / 2
return self.interpolate(
start_frame["lr"],
end_frame["lr"],
pct_of_range_cos,
)
if isinstance(transition, Callable):
return transition(self.last_lr, start_frame, end_frame, position, self)
raise ValueError(f"Unknown transition: {transition!r}")
def get_lr_at_pos(self, position):
start_frame = None
transition = None
end_frame = None
lr = None
for frame in self.frames:
if "position" in frame:
if frame["position"] == position:
lr = frame["lr"]
# Direct match, we're done
break
if frame["position"] < position:
start_frame = frame
if start_frame is not None and "transition" in frame:
transition = frame["transition"]
if (
transition is not None
and "position" in frame
and frame["position"] >= position
):
end_frame = frame
break
if lr is None:
if start_frame is None or end_frame is None:
print(f"No matching frames at position {position}, using last LR.")
return self.last_lr
lr = self.interpolate_frames(start_frame, transition, end_frame, position)
# We store last_lr here so that custom transitions work with .sample_lrs()
self.last_lr = lr
return lr
@property
def progress(self):
if self.units == "time":
return (timeit.default_timer() - self.start_time) / self.end
return self.last_epoch / self.end
def get_lr(self):
if self.units == "percent":
position = self.last_epoch / self.end
elif self.units == "steps":
position = self.last_epoch
elif self.units == "time":
position = (timeit.default_timer() - self.start_time) / self.end
else:
raise TypeError(f"Unknown units {self.units}")
lr = self.get_lr_at_pos(position)
return [lr for _ in self.optimizer.param_groups]
def sample_lrs(self, n=100):
"""
Get a sample of the LRs that would be produced, for visualization.
This might not work well with custom transitions.
"""
# We don't want to generate a huge number of steps or affect optimizer state
# so don't use the scheduler.step() machinery.
# Instead, we loop manually and call get_lr_at_pos() directly
lrs = []
for i in range(n):
pos = i / n
if self.units == "steps":
pos *= self.end
lrs.append(self.get_lr_at_pos(pos))
self.last_lr = 0
return lrs
def print_frames(self):
for frame in self.frames:
print(frame)
def get_linear_schedule_with_warmup(optimizer, lr_max, num_warmup_steps, num_training_steps, last_epoch=-1):
def lr_lambda(current_step):
learning_rate = max(0.0, 1.0 - (float(current_step) / float(num_training_steps)))
learning_rate *= lr_max * min(1.0, float(current_step) / float(num_warmup_steps))
return learning_rate
return LambdaLR(optimizer, lr_lambda, last_epoch)
def get_exponential_schedule_with_warmup(optimizer, lr_max, lr_end, num_warmup_steps, num_training_steps, last_epoch=-1):
scheduler = KeyframeLR(
optimizer=optimizer,
units="steps",
frames=[
{"position": 0, "lr": 0.0},
{"position": num_warmup_steps, "lr": lr_max},
{"transition": lambda last_lr, *_: last_lr * 0.999 + lr_end},
],
end=num_training_steps,
)
return scheduler
if __name__ == '__main__':
import matplotlib.pyplot as plt
lr_max = 1e-4
lr_end = 1e-5
power = 5.0
power = 1.0
num_warmup_steps = 4_000
num_training_steps = 10_000
model = AutoModel.from_pretrained("bert-base-uncased")
optimizer = torch.optim.Adam(model.parameters(), lr=lr_max)
# KeyframeLR
# scheduler = get_exponential_schedule_with_warmup(optimizer, lr_max=1e-4, lr_end=1e-6, num_warmup_steps=1000, num_training_steps=10000)
# transformers LR scheduler
scheduler = transformers.get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps)
scheduler = transformers.get_polynomial_decay_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, lr_end=lr_end, power=power)
lrs = []
for i in range(num_training_steps):
optimizer.step()
lrs.append(optimizer.param_groups[0]["lr"])
scheduler.step()
plt.plot(lrs)
plt.show() |