File size: 39,400 Bytes
0a937d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 |
import logging
import PIL
from transformers.image_utils import ChannelDimension
from src.model.baseline_backbone.colpali import ColPaliProcessor
logger = logging.getLogger(__name__)
import torch
import numpy as np
from src.utils import print_master
from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration
from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM
from src.model.vlm_backbone.qwen2_vl_gp import Qwen2VLForConditionalGeneration_GP, Qwen2VLProcessor
from src.model.vlm_backbone.qwen2_5_vl_gp import Qwen2_5_VLForConditionalGeneration_GP, Qwen2_5_VL_GP_Processor
from src.model.vlm_backbone.qwen2_vl_layer_prune import Qwen2VLForConditionalGeneration_LayerPrune, Qwen2VLProcessor
from src.model.vlm_backbone.qwen2_vl import Qwen2VLForConditionalGeneration, Qwen2VLProcessor
from src.model.vlm_backbone.qwen2_vl_tokenselection import \
Qwen2VLForConditionalGeneration as Qwen2VLTokenSelectionForConditionalGeneration, \
Qwen2VLProcessor as Qwen2VLTokenSelectionProcessor
from src.model.baseline_backbone.internvideo2.modeling_internvideo2 import InternVideo2_Stage2
from src.model.vlm_backbone.qwen2_5_vl import Qwen2_5_VLForConditionalGeneration
from src.model.vlm_backbone.qwen2_5_vl_tokenselection import \
Qwen2_5_VLForConditionalGeneration as Qwen2_5_VL_TokenSelectionForConditionalGeneration
from qwen_vl_utils import process_vision_info
PHI_IMAGE_TOKEN_MAX_INPUT_ID = int(1e9)
LLAVA_IMAGE_TOKEN_ID = 32000
PHI3V = 'phi3_v'
LLAVA_NEXT = 'llava_next'
QWEN2_VL_GP = 'qwen2_vl_gp'
QWEN2_5_VL_GP = 'qwen2_5_vl_gp'
QWEN2_VL_LayerPrune = 'qwen2_vl_layerprune'
QWEN2_VL = 'qwen2_vl'
QWEN2_VL_TOKENSELECTION = 'qwen2_vl'
QWEN2_5_VL = 'qwen2_5_vl'
QWEN2_VL_TOKENSELECTION = 'qwen2_vl_tokenselection'
QWEN2_5_VL_TOKENSELECTION = 'qwen2_5_vl_tokenselection'
INTERNVIDEO2 = 'internvideo2'
GME = 'gme' # QWEN2-VL
LamRA = 'lamra' # QWEN2-VL
LamRA_QWEN2_5 = 'lamra_qwen25' # QWEN2.5-VL
COLPALI = 'colpali' # PaliGemma-3B
E5_V = 'e5_v' # Llava_next
MODEL2BACKBONE = { # keys are from hf_config.model_type or manually added if not provided
'phi3_v': PHI3V,
'llava_next': LLAVA_NEXT,
'qwen2_vl_gp': QWEN2_VL_GP,
'qwen2_5_vl_gp': QWEN2_5_VL_GP,
'qwen2_vl_layerprune': QWEN2_VL_LayerPrune,
'qwen2_vl': QWEN2_VL,
'qwen2_vl_tokenselection': QWEN2_VL,
'qwen2_5_vl': QWEN2_5_VL,
'qwen2_vl_tokenselection': QWEN2_VL_TOKENSELECTION,
'qwen2_5_vl_tokenselection': QWEN2_5_VL_TOKENSELECTION,
'internvideo2': INTERNVIDEO2,
'gme': GME,
'lamra': LamRA,
'lamra_qwen25': LamRA,
'colpali': COLPALI,
'e5_v': E5_V,
}
SUPPORTED_MODELS = set(MODEL2BACKBONE.keys())
VLM_IMAGE_TOKENS = {
PHI3V: "<|image_1|>",
LLAVA_NEXT: "<image>",
QWEN2_VL_GP: "<|image_pad|>",
QWEN2_5_VL_GP: "<|image_pad|>",
QWEN2_VL_LayerPrune: "<|image_pad|>",
QWEN2_VL: "<|image_pad|>",
QWEN2_5_VL: "<|image_pad|>",
QWEN2_VL_TOKENSELECTION: "<|image_pad|>",
QWEN2_5_VL_TOKENSELECTION: "<|image_pad|>",
GME: "<|image_pad|>",
LamRA: "<|image_pad|>",
LamRA_QWEN2_5: "<|image_pad|>",
INTERNVIDEO2: "",
COLPALI: "",
E5_V: "<image>",
}
VLM_VIDEO_TOKENS = {
LLAVA_NEXT: "<image>",
QWEN2_VL_GP: "<|video_pad|>",
QWEN2_5_VL_GP: "<|video_pad|>",
QWEN2_VL_LayerPrune: "<|video_pad|>",
QWEN2_VL: "<|video_pad|>",
QWEN2_5_VL: "<|video_pad|>",
QWEN2_VL_TOKENSELECTION: "<|video_pad|>",
QWEN2_5_VL_TOKENSELECTION: "<|video_pad|>",
GME: "<|video_pad|>",
LamRA: "<|video_pad|>",
LamRA_QWEN2_5: "<|video_pad|>",
INTERNVIDEO2: "",
COLPALI: "",
E5_V: "<image>",
}
backbone2model = {
PHI3V: Phi3VForCausalLM,
LLAVA_NEXT: LlavaNextForConditionalGeneration,
QWEN2_VL_GP: Qwen2VLForConditionalGeneration_GP,
QWEN2_5_VL_GP: Qwen2_5_VLForConditionalGeneration_GP,
"QWEN2_VL_LayerPrune": Qwen2VLForConditionalGeneration_LayerPrune,
QWEN2_VL: Qwen2VLForConditionalGeneration,
QWEN2_5_VL: Qwen2_5_VLForConditionalGeneration,
QWEN2_VL_TOKENSELECTION: Qwen2VLTokenSelectionForConditionalGeneration,
QWEN2_5_VL_TOKENSELECTION: Qwen2_5_VL_TokenSelectionForConditionalGeneration,
INTERNVIDEO2: InternVideo2_Stage2,
E5_V: LlavaNextForConditionalGeneration,
}
def load_processor(model_args, data_args=None):
"""
Load processor based on VLM backbone.
Note: due to this change, https://github.com/huggingface/transformers/commit/9215cc62d4366072aacafa4e44028c1ca187167b#diff-6505546ec5a9ab74b2ce6511681dd31194eb91e9fa3ce26282e487a5e61f9356L1102
"""
model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name
print_master(f'Loading processor from: {model_name_or_path}')
if model_args.model_backbone == PHI3V:
from src.model.baseline_backbone.phi3_v.processing_phi3_v import Phi3VProcessor
processor = Phi3VProcessor.from_pretrained(
model_name_or_path,
trust_remote_code=True,
num_crops=model_args.num_crops
)
processor.tokenizer.padding_side = "right"
elif model_args.model_backbone == LLAVA_NEXT:
from src.model.baseline_backbone.llava_next import LlavaNextProcessor
processor = LlavaNextProcessor.from_pretrained(
model_name_or_path,
trust_remote_code=True
)
elif model_args.model_backbone in [QWEN2_VL, GME, LamRA]:
from src.model.vlm_backbone.qwen2_vl.processing_qwen2_vl import Qwen2VLProcessor
from src.model.vlm_backbone.qwen2_vl.image_processing_qwen2_vl import Qwen2VLImageProcessor
from src.model.vlm_backbone.qwen2_vl.tokenization_qwen2_fast import Qwen2TokenizerFast
min_pixels, max_pixels = None, None
if data_args is not None:
min_pixels, max_pixels = data_args.resize_min_pixels, data_args.resize_max_pixels
size = {"shortest_edge": min_pixels, "longest_edge": max_pixels}
image_processor = Qwen2VLImageProcessor.from_pretrained(model_name_or_path, size=size)
tokenizer = Qwen2TokenizerFast.from_pretrained(model_name_or_path)
processor = Qwen2VLProcessor.from_pretrained(
model_name_or_path,
image_processor=image_processor, tokenizer=tokenizer, size=size
)
elif model_args.model_backbone == QWEN2_VL_TOKENSELECTION:
from src.model.vlm_backbone.qwen2_vl_tokenselection.processing_qwen2_vl import Qwen2VLProcessor
from src.model.vlm_backbone.qwen2_vl_tokenselection.image_processing_qwen2_vl import Qwen2VLImageProcessor
from src.model.vlm_backbone.qwen2_vl_tokenselection.tokenization_qwen2_fast import Qwen2TokenizerFast
min_pixels, max_pixels = None, None
if data_args is not None:
min_pixels, max_pixels = data_args.resize_min_pixels, data_args.resize_max_pixels
size = {"shortest_edge": min_pixels, "longest_edge": max_pixels}
image_processor = Qwen2VLImageProcessor.from_pretrained(model_name_or_path, size=size)
if data_args is not None:
image_processor.do_resize = data_args.resize_use_processor
image_processor.min_pixels = data_args.resize_min_pixels
image_processor.max_pixels = data_args.resize_max_pixels
tokenizer = Qwen2TokenizerFast.from_pretrained(model_name_or_path)
processor = Qwen2VLProcessor.from_pretrained(
model_name_or_path,
image_processor=image_processor, tokenizer=tokenizer, size=size,
uigraph_use=model_args.uigraph_use,
uigraph_diff=model_args.uigraph_diff, uigraph_rand=model_args.uigraph_rand,
uimask_ratio=model_args.uimask_ratio, uimask_rand=model_args.uimask_rand
)
elif model_args.model_backbone in [QWEN2_5_VL, LamRA_QWEN2_5]:
from src.model.vlm_backbone.qwen2_5_vl.processing_qwen2_5_vl import Qwen2_5_VLProcessor
from src.model.vlm_backbone.qwen2_5_vl.image_processing_qwen2_5_vl import Qwen2_5_VLImageProcessor
from src.model.vlm_backbone.qwen2_vl.tokenization_qwen2_fast import Qwen2TokenizerFast
min_pixels, max_pixels = None, None
if data_args is not None:
min_pixels, max_pixels = data_args.resize_min_pixels, data_args.resize_max_pixels
size = {"shortest_edge": min_pixels, "longest_edge": max_pixels, "min_pixels": min_pixels, "max_pixels": max_pixels}
image_processor = Qwen2_5_VLImageProcessor.from_pretrained(model_name_or_path, size=size)
tokenizer = Qwen2TokenizerFast.from_pretrained(model_name_or_path)
processor = Qwen2_5_VLProcessor.from_pretrained(model_name_or_path, image_processor=image_processor, tokenizer=tokenizer)
# elif model_args.model_backbone in [QWEN2_5_VL_GP]:
# from src.model.vlm_backbone.qwen2_5_vl_gp.processing_qwen2_5_vl import Qwen2_5_VLProcessor
# from src.model.vlm_backbone.qwen2_5_vl_gp.image_processing_qwen2_5_vl import Qwen2_5_VLImageProcessor
# from src.model.vlm_backbone.qwen2_vl.tokenization_qwen2_fast import Qwen2TokenizerFast
# min_pixels, max_pixels = None, None
# if data_args is not None:
# min_pixels, max_pixels = data_args.resize_min_pixels, data_args.resize_max_pixels
# size = {"shortest_edge": min_pixels, "longest_edge": max_pixels, "min_pixels": min_pixels, "max_pixels": max_pixels}
# image_processor = Qwen2_5_VLImageProcessor.from_pretrained(model_name_or_path, size=size)
# tokenizer = Qwen2TokenizerFast.from_pretrained(model_name_or_path)
# processor = Qwen2_5_VLProcessor.from_pretrained(model_name_or_path, image_processor=image_processor, tokenizer=tokenizer)
# processor.tokenizer.padding_side = "left"
elif model_args.model_backbone in [QWEN2_5_VL_GP]:
# 使用 GP 专用 Processor(支持 normed_bboxes -> ref_token_masks)
max_pixels = getattr(data_args, "resize_max_pixels", 12845056) if data_args is not None else 12845056
processor = Qwen2_5_VL_GP_Processor.from_pretrained(
model_name_or_path,
max_pixels=max_pixels,
)
# tokenizer 补丁:eos/pad/左对齐(与 GP 训练假设一致)
tok = processor.tokenizer
if not hasattr(tok, "eos_token_id") or tok.eos_token_id is None:
tok.eos_token_id = tok.convert_tokens_to_ids(tok.eos_token)
if getattr(tok, "pad_token_id", None) is None:
tok.pad_token_id = tok.eos_token_id
tok.padding_side = "left"
# 对齐你现有的缩放参数(若存在)
if data_args is not None:
try:
processor.image_processor.do_resize = data_args.resize_use_processor
processor.image_processor.min_pixels = data_args.resize_min_pixels
processor.image_processor.max_pixels = data_args.resize_max_pixels
size = {
"shortest_edge": data_args.resize_min_pixels,
"longest_edge": data_args.resize_max_pixels,
"min_pixels": data_args.resize_min_pixels,
"max_pixels": data_args.resize_max_pixels,
}
if hasattr(processor.image_processor, "size"):
processor.image_processor.size = size
except Exception as e:
print_master(f"[warn] set resize fields on GP image_processor failed: {e}")
elif model_args.model_backbone in [QWEN2_VL_GP]:
from src.model.vlm_backbone.qwen2_vl_gp.processing_qwen2_vl import Qwen2VLProcessor
from src.model.vlm_backbone.qwen2_vl_gp.image_processing_qwen2_vl import Qwen2VLImageProcessor
from src.model.vlm_backbone.qwen2_vl_gp.tokenization_qwen2_fast import Qwen2TokenizerFast
min_pixels, max_pixels = None, None
if data_args is not None:
min_pixels, max_pixels = data_args.resize_min_pixels, data_args.resize_max_pixels
size = {"shortest_edge": min_pixels, "longest_edge": max_pixels}
image_processor = Qwen2VLImageProcessor.from_pretrained(model_name_or_path, size=size)
tokenizer = Qwen2TokenizerFast.from_pretrained(model_name_or_path)
processor = Qwen2VLProcessor.from_pretrained(
model_name_or_path,
image_processor=image_processor, tokenizer=tokenizer, size=size
)
processor.tokenizer.padding_side = "left"
elif model_args.model_backbone == QWEN2_5_VL_TOKENSELECTION:
# TODO: qwen2.5 token selection not working yet
from src.model.vlm_backbone.qwen2_5_vl_tokenselection.processing_qwen2_5_vl import Qwen2_5_VLProcessor
from src.model.vlm_backbone.qwen2_5_vl_tokenselection.image_processing_qwen2_5_vl import Qwen2_5_VLImageProcessor
from src.model.vlm_backbone.qwen2_vl_tokenselection.tokenization_qwen2_fast import Qwen2TokenizerFast
min_pixels, max_pixels = None, None
if data_args is not None:
min_pixels, max_pixels = data_args.resize_min_pixels, data_args.resize_max_pixels
size = {"shortest_edge": min_pixels, "longest_edge": max_pixels, "min_pixels": min_pixels, "max_pixels": max_pixels}
image_processor = Qwen2_5_VLImageProcessor.from_pretrained(model_name_or_path, size=size)
tokenizer = Qwen2TokenizerFast.from_pretrained(model_name_or_path)
processor = Qwen2_5_VLProcessor.from_pretrained(
model_name_or_path,
image_processor=image_processor, tokenizer=tokenizer,
uigraph_use=model_args.uigraph_use,
uigraph_diff=model_args.uigraph_diff, uigraph_rand=model_args.uigraph_rand,
uimask_ratio=model_args.uimask_ratio, uimask_rand=model_args.uimask_rand
)
elif model_args.model_backbone == INTERNVIDEO2:
return None
elif model_args.model_backbone == COLPALI:
from transformers import AutoProcessor
processor = ColPaliProcessor.from_pretrained(model_args.model_name)
else:
from transformers import AutoProcessor
processor = AutoProcessor.from_pretrained(
model_args.processor_name if model_args.processor_name else model_args.model_name,
trust_remote_code=True,
)
return processor
def get_backbone_name(hf_config, model_type=None):
if model_type is not None:
setattr(hf_config, 'model_type', model_type)
assert hf_config.model_type in SUPPORTED_MODELS, f"Unknown backbone name {hf_config.model_type}.Supported models are {SUPPORTED_MODELS}"
return MODEL2BACKBONE[hf_config.model_type]
def Llava_NEXT_process_fn(model_inputs: dict, processor, max_length=None):
# TODO: NOT FINISHED YET!
input_ids, pixel_values, image_sizes = [], [], []
texts, visual_inputs = model_inputs['text'], model_inputs['images']
image_exists = False
# 1. iterate each pair and process (since processors do not support batch processing)
for text, images in zip(texts, visual_inputs):
# in theory, each batch item should contain a list of frames, but we still check for exceptions here
# if no images as input (not likely to happen in mmeb pro cases)
if images is None or (type(images)==list and any(i is None for i in images)):
inputs = processor(images=None, text=text, return_tensors="np", max_length=max_length, truncation=True)
input_id = inputs["input_ids"].squeeze().tolist()
if isinstance(input_id, int):
# in case of empty string, only BOS is included
input_id = [input_id]
input_ids.append(input_id)
pixel_values.append(None)
image_sizes.append(None)
else:
image_exists = True
# in theory, valid images should be a list of frames
assert isinstance(images, list), f"images should be a list, but got {type(images)}"
inputs = processor(images=images, text=text, return_tensors="np", max_length=max_length, truncation=True)
input_ids.append(inputs["input_ids"].squeeze().tolist())
pixel_values.append(inputs['pixel_values'])
image_sizes.append(inputs['image_sizes'])
# 2. padding inputs
batch_encoding = processor.tokenizer.pad({'input_ids': input_ids}, return_tensors="pt")
input_ids, attention_mask = batch_encoding['input_ids'], batch_encoding['attention_mask']
inputs = {
'input_ids': input_ids.long(),
'attention_mask': attention_mask,
# 'texts': texts,
# 'images': visual_inputs,
}
image_exists = any([p is not None for p in pixel_values])
if image_exists:
pixel_values = torch.from_numpy(np.array(pixel_values)).float()
pixel_values_shape = pixel_values.shape
pixel_values = pixel_values.reshape(pixel_values_shape[0] * pixel_values_shape[1], *pixel_values_shape[2:])
image_sizes = torch.tensor(np.array(image_sizes)).long()
image_sizes_shape = image_sizes.shape
image_sizes = image_sizes.reshape(image_sizes_shape[0] * image_sizes_shape[1], *image_sizes_shape[2:])
inputs['pixel_values'] = torch.from_numpy(np.array(pixel_values)).float()
inputs['image_sizes'] = torch.tensor(np.array(image_sizes)).long()
else:
inputs['pixel_values'] = torch.zeros(input_ids.shape[0], 1)
inputs['image_sizes'] = torch.ones(input_ids.shape[0], 1)
return inputs
def Phi3V_process_fn(model_inputs: dict, processor, max_length=None):
input_ids, pixel_values, image_sizes, image_grid_thw = [], [], [], []
texts, images = model_inputs['text'], model_inputs['images']
image_exists = False
# 1. iterate each pair and process (since processors do not support batch processing)
for text, image in zip(texts, images):
if image is None:
inputs = processor(text, None, return_tensors="np", max_length=max_length, truncation=True)
input_id = inputs["input_ids"].squeeze().tolist()
if isinstance(input_id, int):
# in case of empty string, only BOS is included
input_id = [input_id]
input_ids.append(input_id)
pixel_values.append(None)
image_sizes.append(None)
image_grid_thw.append(None)
else:
image_exists = True
inputs = processor(text=text, images=[image], return_tensors="np", max_length=max_length, truncation=True)
input_ids.append(inputs["input_ids"].squeeze().tolist())
pixel_values.append(inputs['pixel_values'])
if 'image_sizes' in inputs:
image_sizes.append(inputs['image_sizes'])
if 'image_grid_thw' in inputs:
image_grid_thw.append(inputs['image_grid_thw'])
# 2. padding inputs
batch_encoding = processor.tokenizer.pad({'input_ids': input_ids}, return_tensors="pt")
input_ids, attention_mask = batch_encoding['input_ids'], batch_encoding['attention_mask']
inputs = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'texts': texts,
'images': images,
}
# 3. special postcare for mixed batch (examples w/ and w/o images in the same batch)
if image_exists:
# add them to inputs
inputs['pixel_values'] = pixel_values
inputs['image_sizes'] = image_sizes
else:
inputs['pixel_values'] = torch.zeros(input_ids.shape[0], 1)
inputs['image_sizes'] = torch.ones(input_ids.shape[0], 1)
return inputs
def Qwen2_VL_process_fn(model_inputs: dict, processor: Qwen2VLProcessor, max_length=None):
# TODO: set separate max_len for text/visual inputs, currently max_length is only applied to text-only data
input_ids, pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw = [], [], [], [], []
texts, visual_inputs = model_inputs['text'], model_inputs['images']
image_exists = False
vlm_image_token, vlm_video_token = VLM_IMAGE_TOKENS[QWEN2_VL], VLM_VIDEO_TOKENS[QWEN2_VL]
# 1. iterate each pair and process, since processors do not support processing for mixed batch (contains data w/ and w/o visual inputs)
for text, images in zip(texts, visual_inputs):
if images is None or (type(images)==list and any(i is None for i in images)):
# all images must be valid
inputs = processor(text=[text], images=None, return_tensors="np", max_length=max_length, truncation=True)
input_id = inputs["input_ids"].squeeze().tolist()
if isinstance(input_id, int):
# in case of empty string, only BOS is included
input_id = [input_id]
input_ids.append(input_id)
pixel_values.append(None)
image_grid_thw.append(None)
pixel_values_videos.append(None)
video_grid_thw.append(None)
else:
try:
if vlm_image_token in text:
if isinstance(images, PIL.Image.Image):
# images is a single image
images = [images]
for iid, image in enumerate(images):
# rare case in MMEB eval: resize to 28*28 if either w or h is smaller than 28
if image.size[0] < 28 or image.size[1] < 28:
image = image.resize((56, 56))
images[iid] = image
inputs = processor(text=[text], images=images, return_tensors="np", max_length=None, truncation=False, input_data_format=ChannelDimension.LAST)
elif vlm_video_token in text:
# TODO: check text/video data validity
inputs = processor(text=[text], videos=[images], return_tensors="np", max_length=None, truncation=False, input_data_format=ChannelDimension.LAST)
else:
raise NotImplementedError(f"No visual token found ({vlm_image_token} or {vlm_video_token}) in the text: {text}")
except Exception as e:
for i in images:
print(i.filename)
raise e
input_ids.append(inputs["input_ids"].squeeze().tolist())
if 'pixel_values' in inputs:
pixel_values.append(inputs['pixel_values'])
image_grid_thw.append(inputs['image_grid_thw'])
pixel_values_videos.append(None)
video_grid_thw.append(None)
else:
pixel_values.append(None)
image_grid_thw.append(None)
pixel_values_videos.append(inputs['pixel_values_videos'])
video_grid_thw.append(inputs['video_grid_thw'])
# 2. padding inputs
batch_encoding = processor.tokenizer.pad({'input_ids': input_ids}, return_tensors="pt")
input_ids, attention_mask = batch_encoding['input_ids'], batch_encoding['attention_mask']
# manually enforce long type due to:
# (1) [rank7]: RuntimeError: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.FloatTensor instead (while checking arguments for embedding)
# (2) [rank7]: File "/fsx/home/ruimeng/project/VLM2Vec/src/model.py", line 45, in _pooling
# [rank7]: reps = last_hidden_state[
# [rank7]: IndexError: tensors used as indices must be long, int, byte or bool tensors
inputs = {
'input_ids': input_ids.long(),
'attention_mask': attention_mask.long(),
'texts': texts,
'images': visual_inputs,
}
inputs['pixel_values'] = pixel_values
inputs['image_grid_thw'] = image_grid_thw
inputs['pixel_values_videos'] = pixel_values_videos
inputs['video_grid_thw'] = video_grid_thw
return inputs
def Gme_process_fn(model_inputs: dict, processor: Qwen2VLProcessor, max_length=None):
inputs = {
'texts': model_inputs['text'],
'images': model_inputs['images'],
}
return inputs
def Qwen2_VL_TokenSelection_process_fn(model_inputs: dict, processor: Qwen2VLTokenSelectionProcessor, max_length=None):
# TODO: set separate max_len for text/visual inputs, currently max_length is only applied to text-only data
input_ids, pixel_values, image_grid_thw, pixel_values_videos, video_grid_thw = [], [], [], [], []
patch_pos, select_mask = [], []
texts, visual_inputs = model_inputs['text'], model_inputs['images']
image_exists = False
# 1. iterate each pair and process (since processors do not support batch processing)
for text, images in zip(texts, visual_inputs):
if images is None or (type(images)==list and any(i is None for i in images)):
# all images must be valid
inputs = processor(text=[text], images=None, return_tensors="np", max_length=max_length, truncation=True)
input_id = inputs["input_ids"].squeeze().tolist()
if isinstance(input_id, int):
# in case of empty string, only BOS is included
input_id = [input_id]
input_ids.append(input_id)
pixel_values.append(None)
image_grid_thw.append(None)
patch_pos.append(None)
select_mask.append(None)
pixel_values_videos.append(None)
video_grid_thw.append(None)
else:
image_exists = True
# TODO only
# handling multi-image data from videos, cannot deal with mixed image + video data
if VLM_IMAGE_TOKENS[QWEN2_VL] in text:
inputs = processor(text=[text], images=[images], return_tensors="np", max_length=None, truncation=False, input_data_format=ChannelDimension.LAST)
elif VLM_VIDEO_TOKENS[QWEN2_VL] in text:
assert len(images) > 1, f"Video data must have more than 1 frame, got {len(images)}"
inputs = processor(text=[text], videos=[images], return_tensors="np", max_length=None, truncation=False, input_data_format=ChannelDimension.LAST)
else:
raise NotImplementedError(f"Unsupported visual token in text: {text}")
input_ids.append(inputs["input_ids"].squeeze().tolist())
if 'pixel_values' in inputs:
pixel_values.append(inputs['pixel_values'])
image_grid_thw.append(inputs['image_grid_thw'])
pixel_values_videos.append(None)
video_grid_thw.append(None)
if 'patch_pos' in inputs:
patch_pos.append(inputs['patch_pos'])
if 'select_mask' in inputs:
select_mask.append(inputs['select_mask'])
else:
pixel_values.append(None)
image_grid_thw.append(None)
patch_pos.append(None)
select_mask.append(None)
pixel_values_videos.append(inputs['pixel_values_videos'])
video_grid_thw.append(inputs['video_grid_thw'])
# 2. padding inputs
batch_encoding = processor.tokenizer.pad({'input_ids': input_ids}, return_tensors="pt")
input_ids, attention_mask = batch_encoding['input_ids'], batch_encoding['attention_mask']
if image_exists:
if patch_pos:
patch_pos_shape_for_padding = list(v.shape for v in patch_pos if v is not None)[0]
key_tmp = [torch.from_numpy(v) if v is not None else (torch.zeros(patch_pos_shape_for_padding) - 1) for v in patch_pos]
max_length = input_ids.size(1)
padded_key = [torch.nn.functional.pad(pos, (0, max_length - pos.size(1)), value=-1) for pos in key_tmp]
patch_pos = torch.cat(padded_key, dim=0)
if select_mask:
select_mask_shape_for_padding = list(v.shape for v in select_mask if v is not None)[0]
key_tmp = [torch.from_numpy(v) if v is not None else torch.ones(select_mask_shape_for_padding).bool() for v in select_mask]
max_length = input_ids.size(1)
padded_key = [torch.nn.functional.pad(pos, (0, max_length - pos.size(1)), value=True) for pos in key_tmp]
select_mask = torch.cat(padded_key, dim=0)
# manually enforce long type due to:
# (1) [rank7]: RuntimeError: Expected tensor for argument #1 'indices' to have one of the following scalar types: Long, Int; but got torch.cuda.FloatTensor instead (while checking arguments for embedding)
# (2) [rank7]: File "/fsx/home/ruimeng/project/VLM2Vec/src/model.py", line 45, in _pooling
# [rank7]: reps = last_hidden_state[
# [rank7]: IndexError: tensors used as indices must be long, int, byte or bool tensors
inputs = {
'input_ids': input_ids.long(),
'attention_mask': attention_mask.long()
}
inputs['pixel_values'] = pixel_values
inputs['image_grid_thw'] = image_grid_thw
inputs['pixel_values_videos'] = pixel_values_videos
inputs['video_grid_thw'] = video_grid_thw
inputs['patch_pos'] = patch_pos
inputs['select_mask'] = select_mask
return inputs
def _strip_image_tokens_from_text(txt: str, model_backbone: str) -> str:
if not isinstance(txt, str):
return ""
img_tok = VLM_IMAGE_TOKENS.get(model_backbone, None)
vid_tok = VLM_VIDEO_TOKENS.get(model_backbone, None)
if img_tok and img_tok in txt:
txt = txt.replace(img_tok, "").strip()
if vid_tok and vid_tok in txt:
txt = txt.replace(vid_tok, "").strip()
return txt
def Qwen2_5_VL_GP_chat_process_fn(model_inputs: dict, processor, max_length=None):
"""
支持输入:
model_inputs = {'text': [str], 'images': [List[PIL] or None], 'bboxes': Optional[List[List[xyxy]]]}
行为:
- 构造 chat messages: [{"role":"user","content":[{"type":"image","image":...}, {"type":"text","text":...}]}]
- 归一化 bbox(如果有);若无则 [[0,0,1,1]]
- processor(..., normed_bboxes=...) -> 返回 ref_token_masks
"""
texts = model_inputs["text"]
images_batch = model_inputs["images"]
bboxes_batch = model_inputs.get("bboxes", None)
messages, normed_bboxes, image_counts = [], [], []
for i, (txt, imgs) in enumerate(zip(texts, images_batch)):
txt = _strip_image_tokens_from_text(txt, QWEN2_5_VL_GP)
content = []
if imgs is not None:
assert isinstance(imgs, list), f"Expect a list of PIL images, got {type(imgs)}"
for im in imgs:
content.append({"type": "image", "image": im})
image_counts.append(len(imgs))
else:
image_counts.append(0)
content.append({"type": "text", "text": txt})
messages.append([{"role": "user", "content": content}])
if bboxes_batch is not None and bboxes_batch[i] and imgs is not None and len(imgs) > 0:
W, H = imgs[0].size
nb = []
for (x1, y1, x2, y2) in bboxes_batch[i]:
nb.append([x1 / W, y1 / H, x2 / W, y2 / H])
normed_bboxes.append(nb)
else:
normed_bboxes.append([[0.0, 0.0, 1.0, 1.0]])
text_inputs = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=False)
image_inputs, video_inputs = process_vision_info(messages)
out = processor(
text=text_inputs,
images=image_inputs,
videos=video_inputs,
normed_bboxes=normed_bboxes,
padding=True,
return_tensors="pt",
)
out["texts"] = texts
out["images"] = images_batch
out["image_counts"] = torch.tensor(image_counts, dtype=torch.long) # 新增
merge_len = 1
try:
merge_len = int(getattr(processor.image_processor, "merge_size", 1)) ** 2
except Exception:
pass
out["image_counts"] = torch.tensor(image_counts, dtype=torch.long) # 每样本图片数 [B]
out["merge_length"] = torch.tensor(merge_len, dtype=torch.long) # 常量(窗口除数)
return out
def InternVL_process_fn(model_inputs: dict, processor, max_length=None):
# TODO not working yet
input_ids, pixel_values, image_sizes, image_grid_thw = [], [], [], []
texts, images = model_inputs['text'], model_inputs['images']
image_exists = False
# 1. iterate each pair and process (since processors do not support batch processing)
for text, image in zip(texts, images):
if image is None:
inputs = processor(text, None, return_tensors="np", max_length=max_length, truncation=True)
input_id = inputs["input_ids"].squeeze().tolist()
if isinstance(input_id, int):
# in case of empty string, only BOS is included
input_id = [input_id]
input_ids.append(input_id)
pixel_values.append(None)
image_sizes.append(None)
image_grid_thw.append(None)
else:
image_exists = True
inputs = processor(text=text, images=[image], return_tensors="np", max_length=max_length, truncation=True)
input_ids.append(inputs["input_ids"].squeeze().tolist())
pixel_values.append(inputs['pixel_values'])
if 'image_sizes' in inputs:
image_sizes.append(inputs['image_sizes'])
if 'image_grid_thw' in inputs:
image_grid_thw.append(inputs['image_grid_thw'])
# 2. padding inputs
batch_encoding = processor.tokenizer.pad({'input_ids': input_ids}, return_tensors="pt")
input_ids, attention_mask = batch_encoding['input_ids'], batch_encoding['attention_mask']
inputs = {
'input_ids': input_ids,
'attention_mask': attention_mask,
'texts': texts,
'images': images,
}
# 3. special postcare for mixed batch (examples w/ and w/o images in the same batch)
if image_exists:
# add them to inputs
inputs['pixel_values'] = pixel_values
inputs['image_sizes'] = image_sizes
else:
inputs['pixel_values'] = torch.zeros(input_ids.shape[0], 1)
inputs['image_sizes'] = torch.ones(input_ids.shape[0], 1)
return inputs
def ColPali_process_fn(model_inputs: dict, processor, max_length=None):
texts, images = model_inputs['text'], model_inputs['images']
if images is None or all(i is None for i in images):
inputs = processor.process_queries(texts)
else:
inputs = processor.process_images(images)
return inputs
def InternVideo2_process_fn(model_inputs: dict, processor, max_length=None):
if all(x is None for x in model_inputs["images"]):
# Text side
from src.model.baseline_backbone.internvideo2.modeling_internvideo2 import BertTokenizer
tokenizer = BertTokenizer.from_pretrained("bert-large-uncased")
inputs = tokenizer(
model_inputs["text"],
padding="max_length",
truncation=True,
max_length=40,
return_tensors="pt")
else:
# Video side
from torchvision import transforms
preprocess = transforms.Compose([
transforms.Lambda(lambda img: img.convert("RGB") if img.mode != "RGB" else img),
transforms.Resize((224, 224)), # Resize to 224x224
transforms.ToTensor(), # Convert from PIL image to tensor (C, H, W)
transforms.Normalize(mean=[0.485, 0.456, 0.406], # ImageNet mean
std=[0.229, 0.224, 0.225]) # ImageNet std
])
frame_list = model_inputs["images"]
# to make image inputs be exact 4 frames
# Case 1: frame_list is flat (not a list of lists), e.g., [PIL, PIL, ...]
if type(frame_list[0]) is not list:
frame_list = [[img.copy() for _ in range(4)] for img in frame_list]
# Case 2: frame_list is already a list of lists, ensure each has exactly 4 images
elif type(frame_list[0]) is list and len(frame_list[0]) != 4:
new_list = []
for frames in frame_list:
if len(frames) < 4:
frames = frames + [frames[-1].copy() for _ in range(4 - len(frames))]
elif len(frames) > 4:
# Sample 4 indices uniformly across the sequence
indices = np.linspace(0, len(frames) - 1, num=4, dtype=int)
frames = [frames[i] for i in indices]
new_list.append(frames)
frame_list = new_list
pixel_values = [
torch.stack([preprocess(img) for img in frames], dim=0) # (num_frames, C, H, W)
for frames in frame_list
]
pixel_values = torch.stack(pixel_values, dim=0) # (B, num_frames, C, H, W)
inputs = {'pixel_values': pixel_values}
return inputs
def e5_v_prompt_template(text, add_video_token, add_image_token):
llama3_template = '<|start_header_id|>user<|end_header_id|>\n\n{}<|eot_id|><|start_header_id|>assistant<|end_header_id|>\n\n \n'
if text is not None and add_video_token is False and add_image_token is False: # only text
prompt = llama3_template.format('{}\nSummary above sentence in one word: '.format(text))
if text is None and add_video_token: # only video
prompt = llama3_template.format('<image>\nSummary above video in one word: ')
if text is None and add_image_token: # only image
prompt = llama3_template.format('<image>\nSummary above image in one word: ')
if text is not None and add_video_token: # video + text
prompt = llama3_template.format('<image>\n{}\nSummary above video and text in one word: '.format(text))
if text is not None and add_image_token:
prompt = llama3_template.format('<image>\n{}\nSummary above image and text in one word: '.format(text))
return prompt
PROMPT_TEMPLATE_DICT = {
"e5_v": e5_v_prompt_template,
}
def process_input_text(instruction, model_backbone, text=None, add_video_token=False, add_image_token=False):
# Formulate input text based on text, special token and instruction.
# TBD: Reorganize the hard-code part for baselines such as internvideo2
if model_backbone == "internvideo2":
return text
elif model_backbone in [GME, LamRA, LamRA_QWEN2_5]:
if text:
return instruction + " " + text # GME and LamRA do not need special tokens
else:
return instruction + " "
elif model_backbone == E5_V:
return PROMPT_TEMPLATE_DICT[model_backbone](text, add_video_token, add_image_token)
prompt = instruction
if text:
prompt = prompt + " " + text
if add_video_token:
video_token = VLM_VIDEO_TOKENS[model_backbone]
prompt = video_token + " " + prompt
if add_image_token:
image_token = VLM_IMAGE_TOKENS[model_backbone]
prompt = image_token + " " + prompt
return prompt
process_vlm_inputs_fns = {
PHI3V: Phi3V_process_fn,
LLAVA_NEXT: Llava_NEXT_process_fn,
QWEN2_VL_GP: Qwen2_VL_process_fn,
QWEN2_5_VL_GP: Qwen2_VL_process_fn,
QWEN2_VL_LayerPrune: Qwen2_VL_process_fn,
QWEN2_VL: Qwen2_VL_process_fn,
QWEN2_5_VL: Qwen2_VL_process_fn,
QWEN2_VL_TOKENSELECTION: Qwen2_VL_TokenSelection_process_fn,
QWEN2_5_VL_TOKENSELECTION: Qwen2_VL_TokenSelection_process_fn,
INTERNVIDEO2: InternVideo2_process_fn,
GME: Gme_process_fn,
LamRA: Gme_process_fn,
LamRA_QWEN2_5: Gme_process_fn,
COLPALI: ColPali_process_fn,
E5_V: Llava_NEXT_process_fn,
}
|