File size: 43,438 Bytes
0a937d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 |
# from typing import Dict
# import torch
# import torch.distributed as dist
# from torch import nn, Tensor
# from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig
# from peft import LoraConfig, get_peft_model, PeftModel
# from src.model.processor import QWEN2_5_VL_TOKENSELECTION
# from src.arguments import ModelArguments, TrainingArguments
# from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, \
# backbone2model, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V
# from src.arguments import ModelArguments
# from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, INTERNVIDEO2, \
# QWEN2_VL_TOKENSELECTION, backbone2model, GME, VLM_IMAGE_TOKENS, LamRA, LamRA_QWEN2_5, COLPALI
# # 新增:分别引入 TokenPooling 版和 VisionZip 版
# from src.model.vlm_backbone.qwen2_vl_token_pooling.modeling_qwen2_vl import (
# Qwen2VLForConditionalGeneration as Qwen2VLForConditionalGenerationTokenPooling,
# )
# from src.model.vlm_backbone.qwen2_vl_visionzip.modeling_qwen2_vl import (
# Qwen2VLForConditionalGeneration as Qwen2VLForConditionalGenerationVisionZip,
# )
# from src.model.vlm_backbone.qwen2_5_vl_token_pooling.modeling_qwen2_5_vl import (
# Qwen2_5_VLForConditionalGeneration as Qwen2_5VLForConditionalGenerationTokenPooling,
# )
# from src.model.vlm_backbone.qwen2_5_vl_visionzip.modeling_qwen2_5_vl import (
# Qwen2_5_VLForConditionalGeneration as Qwen2_5VLForConditionalGenerationVisionZip,
# )
# from src.model.baseline_backbone.colpali import ColPali
# from src.model.baseline_backbone.gme.gme_inference import GmeQwen2VL
# from src.model.baseline_backbone.lamra.lamra_inference import LamRAQwen2VL
# from src.model.baseline_backbone.lamra.lamra_qwen25_inference import LamRAQwen25VL
# from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM
# from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration
# from transformers import modeling_utils
# if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
# modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", 'rowwise']
# def _ensure_pad_token_id_on_model(base_model):
# """
# Ensure base_model.config.pad_token_id is a valid int.
# Fallback order: config.pad_token_id -> config.eos_token_id -> 0
# Also sync generation_config.pad_token_id if present.
# """
# pad_id = getattr(base_model.config, "pad_token_id", None)
# if pad_id is None:
# pad_id = getattr(base_model.config, "eos_token_id", None)
# if pad_id is None:
# pad_id = 0
# base_model.config.pad_token_id = pad_id
# gen_cfg = getattr(base_model, "generation_config", None)
# if gen_cfg is not None and getattr(gen_cfg, "pad_token_id", None) is None:
# gen_cfg.pad_token_id = base_model.config.pad_token_id
# class MMEBModel(nn.Module):
# TRANSFORMER_CLS = AutoModelForCausalLM
# def __init__(self,
# encoder: PreTrainedModel,
# pooling: str = 'last',
# normalize: bool = False,
# temperature: float = 0.02,
# ):
# super().__init__()
# self.config = encoder.config
# self.encoder = encoder
# self.pooling = pooling
# self.normalize = normalize
# self.temperature = temperature
# self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')
# self.is_ddp = dist.is_initialized()
# if self.is_ddp:
# self.process_rank = dist.get_rank()
# self.world_size = dist.get_world_size()
# @property
# def device(self):
# try:
# return next(self.parameters()).device
# except StopIteration:
# return torch.device("cuda" if torch.cuda.is_available() else "cpu")
# def encode_input(self, input):
# if getattr(self, "model_backbone", None) == INTERNVIDEO2:
# if "input_ids" in input.keys():
# # text side
# text_output = self.encoder.get_text_encoder()(
# input["input_ids"],
# attention_mask=input["attention_mask"],
# return_dict=True,
# mode="text",
# )
# text_embeds = text_output.last_hidden_state
# pooled_text_embeds = text_embeds[:, 0]
# pooled_output = self.encoder.text_proj(pooled_text_embeds)
# pooled_output /= pooled_output.norm(dim=-1, keepdim=True)
# return pooled_output
# else:
# _, vfeat = self.encoder.encode_vision(input["pixel_values"], test=True)
# vfeat = self.encoder.vision_proj(vfeat)
# vfeat /= vfeat.norm(dim=-1, keepdim=True)
# return vfeat
# elif getattr(self, "model_backbone", None) in [GME, LamRA, LamRA_QWEN2_5]:
# # pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
# texts = [text.replace(VLM_IMAGE_TOKENS[QWEN2_VL] + '\n', '') for text in input["texts"]] # we are actually passing video queries so this should not happen
# images = []
# for imgs in input['images']:
# # if multi images are given, select the middle frame only
# if isinstance(imgs, list):
# imgs = imgs[len(imgs) // 2]
# assert not isinstance(imgs, list) # make sure we have extracted the middle frame and it is no longer a list
# images.append(imgs)
# else:
# images.append(imgs)
# pooled_output = self.encoder.get_fused_embeddings(texts=texts, images=images)
# return pooled_output
# elif getattr(self, "model_backbone", None) == COLPALI:
# pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
# return pooled_output
# elif getattr(self, "model_backbone", None) == LLAVA_NEXT:
# input['pixel_values'] = input['pixel_values'].squeeze(dim=1)
# input['image_sizes'] = input['image_sizes'].squeeze(dim=1)
# hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
# hidden_states = hidden_states.hidden_states[-1]
# pooled_output = self._pooling(hidden_states, input['attention_mask'])
# return pooled_output
# else:
# hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
# hidden_states = hidden_states.hidden_states[-1]
# pooled_output = self._pooling(hidden_states, input['attention_mask'])
# return pooled_output
# def _pooling(self, last_hidden_state, attention_mask):
# if self.pooling == 'last' or self.pooling == 'eos':
# left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
# batch_size = last_hidden_state.shape[0]
# if left_padding:
# # Get the vectors at the last position
# reps = last_hidden_state[torch.arange(batch_size), -1, :]
# else:
# # Calculate last 1 position in the original tensor
# eos_indices = attention_mask.sum(dim=1) - 1
# # Get the vectors at the last 1 position of each attention mask
# reps = last_hidden_state[
# torch.arange(batch_size, device=last_hidden_state.device), eos_indices]
# else:
# raise NotImplementedError
# if self.normalize:
# reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
# return reps
# @classmethod
# def build(cls, model_args: ModelArguments, **kwargs):
# config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
# model_backbone = get_backbone_name(hf_config=config)
# print_master(f'Loading backbone [{model_backbone}] from {model_args.model_name}')
# base_model = None # <-- ensure defined before branches
# # Loading the base model
# if model_backbone == PHI3V:
# config._attn_implementation = "eager"
# config.padding_side = "right"
# config.use_cache = False
# base_model = Phi3VForCausalLM.from_pretrained(
# model_args.model_name,
# config=config,
# torch_dtype=torch.bfloat16,
# low_cpu_mem_usage=True,
# )
# elif model_backbone == LLAVA_NEXT:
# config.use_cache = False
# config.padding_side = "left"
# base_model = LlavaNextForConditionalGeneration.from_pretrained(
# model_args.model_name,
# config=config,
# torch_dtype=torch.bfloat16,
# low_cpu_mem_usage=True,
# )
# elif model_backbone in [QWEN2_VL, QWEN2_5_VL]:
# config._attn_implementation = "flash_attention_2"
# config.padding_side = "left"
# config.use_cache = False
# mode = getattr(model_args, "vision_compression", "token_pooling")
# # ========= Qwen2-VL =========
# if model_backbone == QWEN2_VL:
# if mode == "token_pooling":
# BaseCls = Qwen2VLForConditionalGenerationTokenPooling
# print_master("[VisionCompression] Qwen2-VL using TokenPooling modeling")
# elif mode == "visionzip":
# BaseCls = Qwen2VLForConditionalGenerationVisionZip
# print_master("[VisionCompression] Qwen2-VL using VisionZip modeling")
# else: # "none" 或未知
# BaseCls = backbone2model[model_backbone]
# print_master(f"[VisionCompression] Qwen2-VL using vanilla backbone (mode={mode})")
# # ========= Qwen2.5-VL =========
# elif model_backbone == QWEN2_5_VL:
# if mode == "token_pooling":
# BaseCls = Qwen2_5VLForConditionalGenerationTokenPooling
# print_master("[VisionCompression] Qwen2.5-VL using TokenPooling modeling")
# elif mode == "visionzip":
# BaseCls = Qwen2_5VLForConditionalGenerationVisionZip
# print_master("[VisionCompression] Qwen2.5-VL using VisionZip modeling")
# else:
# BaseCls = backbone2model[model_backbone]
# print_master(f"[VisionCompression] Qwen2.5-VL using vanilla backbone (mode={mode})")
# # =============================
# base_model = BaseCls.from_pretrained(
# model_args.model_name,
# config=config,
# torch_dtype=torch.bfloat16,
# low_cpu_mem_usage=True,
# )
# elif model_backbone in [QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION]:
# config._attn_implementation = "flash_attention_2"
# config.padding_side = "left"
# config.use_cache = False
# from .utils import parse_layer_type
# lm_qwen_layer = 28
# vis_qwen_layer = 32
# lm_skip_layer = parse_layer_type(model_args.lm_skip_layer, lm_qwen_layer)
# vis_skip_layer = parse_layer_type(model_args.vis_skip_layer, vis_qwen_layer)
# base_model = backbone2model[model_backbone].from_pretrained(
# model_args.model_name,
# config=config,
# torch_dtype=torch.bfloat16,
# low_cpu_mem_usage=True,
# lm_skip_layer=lm_skip_layer,
# vis_skip_layer=vis_skip_layer,
# )
# else:
# config.use_cache = False
# base_model = cls.TRANSFORMER_CLS.from_pretrained(
# model_args.model_name, **kwargs, config=config,
# attn_implementation="flash_attention_2",
# torch_dtype=torch.bfloat16,
# trust_remote_code=True
# )
# # <-- call after base_model is assigned
# _ensure_pad_token_id_on_model(base_model)
# # Build MMEBModel
# if model_args.lora:
# print_master(f'Loading lora adapter from {base_model}')
# lora_config = LoraConfig(
# r=model_args.lora_r,
# lora_alpha=model_args.lora_alpha,
# target_modules=model_args.lora_target_modules.split(','),
# lora_dropout=model_args.lora_dropout,
# init_lora_weights="gaussian",
# use_dora=True,
# inference_mode=False
# )
# lora_model = get_peft_model(base_model, lora_config)
# model = cls(
# encoder=lora_model,
# pooling=model_args.pooling,
# normalize=model_args.normalize,
# temperature=model_args.temperature
# )
# else:
# model = cls(
# encoder=base_model,
# pooling=model_args.pooling,
# normalize=model_args.normalize,
# temperature=model_args.temperature
# )
# return model
# @classmethod
# def load(cls, model_args: ModelArguments, is_trainable=True, **kwargs):
# # Loading the base model
# model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name
# config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
# if not hasattr(model_args, "model_backbone") or not model_args.model_backbone:
# model_backbone = get_backbone_name(hf_config=config, model_type=model_args.model_type)
# setattr(model_args, 'model_backbone', model_backbone)
# print_master(f'Loading backbone [{model_args.model_backbone}] from {model_name_or_path}')
# base_model = None # <-- ensure defined before branches
# if model_args.model_backbone in {LLAVA_NEXT, QWEN2_VL, QWEN2_5_VL, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V}:
# config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
# config._attn_implementation = "flash_attention_2"
# if hasattr(config, "vision_config") and config.vision_config is not None:
# config.vision_config._attn_implementation = "flash_attention_2"
# mode = getattr(model_args, "vision_compression", "token_pooling")
# # ========= Qwen2-VL =========
# if model_args.model_backbone == QWEN2_VL:
# if mode == "token_pooling":
# BaseCls = Qwen2VLForConditionalGenerationTokenPooling
# print_master("[VisionCompression-load] Qwen2-VL using TokenPooling modeling")
# elif mode == "visionzip":
# BaseCls = Qwen2VLForConditionalGenerationVisionZip
# print_master("[VisionCompression-load] Qwen2-VL using VisionZip modeling")
# else:
# BaseCls = backbone2model[model_args.model_backbone]
# print_master(f"[VisionCompression-load] Qwen2-VL using vanilla backbone (mode={mode})")
# # ========= Qwen2.5-VL =========
# elif model_args.model_backbone == QWEN2_5_VL:
# if mode == "token_pooling":
# BaseCls = Qwen2_5VLForConditionalGenerationTokenPooling
# print_master("[VisionCompression-load] Qwen2.5-VL using TokenPooling modeling")
# elif mode == "visionzip":
# BaseCls = Qwen2_5VLForConditionalGenerationVisionZip
# print_master("[VisionCompression-load] Qwen2.5-VL using VisionZip modeling")
# else:
# BaseCls = backbone2model[model_args.model_backbone]
# print_master(f"[VisionCompression-load] Qwen2.5-VL using vanilla backbone (mode={mode})")
# # 其它 backbone 走原来的 mapping
# else:
# BaseCls = backbone2model[model_args.model_backbone]
# base_model = BaseCls.from_pretrained(
# model_args.model_name,
# torch_dtype=torch.bfloat16,
# low_cpu_mem_usage=True,
# config=config,
# )
# elif model_args.model_backbone == PHI3V:
# config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
# config.use_cache = False
# config.padding_side = "right"
# base_model = Phi3VForCausalLM.from_pretrained(
# model_args.model_name, **kwargs, config=config,
# torch_dtype=torch.bfloat16, trust_remote_code=True
# )
# base_model.padding_side = "right"
# elif model_args.model_backbone == INTERNVIDEO2:
# print_master(f'Loading backbone [{model_args.model_backbone}] from {"src/model/vlm_backbone/internvideo2/"}')
# config = AutoConfig.from_pretrained("src/model/vlm_backbone/internvideo2/", trust_remote_code=True)
# base_model = backbone2model[model_args.model_backbone].from_pretrained(
# "src/model/vlm_backbone/internvideo2/", config=config, trust_remote_code=True
# )
# elif model_args.model_backbone == GME:
# base_model = GmeQwen2VL(model_args.model_name, processor=kwargs['processor'])
# setattr(base_model, 'config', config)
# elif model_args.model_backbone == LamRA:
# base_model = LamRAQwen2VL(model_args.model_name)
# setattr(base_model, 'config', config)
# elif model_args.model_backbone == LamRA_QWEN2_5:
# base_model = LamRAQwen25VL(model_args.model_name)
# setattr(base_model, 'config', config)
# elif model_args.model_backbone == COLPALI:
# base_model = ColPali.from_pretrained(model_args.model_name)
# setattr(base_model, 'config', config)
# else:
# # Loading external base model from HF
# config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
# config.use_cache = False
# base_model = cls.TRANSFORMER_CLS.from_pretrained(
# model_name_or_path, **kwargs, config=config,
# torch_dtype=torch.bfloat16,
# trust_remote_code=True
# )
# # <-- call after base_model is assigned
# _ensure_pad_token_id_on_model(base_model)
# # Building the model on top of the base
# if model_args.lora:
# print_master(f'Loading LoRA from {model_name_or_path}')
# lora_config = LoraConfig.from_pretrained(model_name_or_path)
# lora_model = PeftModel.from_pretrained(
# base_model, model_name_or_path, config=lora_config, is_trainable=is_trainable
# )
# lora_model.load_adapter(model_name_or_path, lora_model.active_adapter, is_trainable=is_trainable)
# if not is_trainable:
# lora_model = lora_model.merge_and_unload()
# model = cls(
# encoder=lora_model,
# pooling=model_args.pooling,
# normalize=model_args.normalize,
# temperature=model_args.temperature
# )
# else:
# model = cls(
# encoder=base_model,
# pooling=model_args.pooling,
# normalize=model_args.normalize,
# temperature=model_args.temperature
# )
# model.model_backbone = model_args.model_backbone
# return model
# def save(self, output_dir: str):
# self.encoder.save_pretrained(output_dir)
# def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs):
# qry_reps = self.encode_input(qry) if qry else None # (bsz_per_device, dim)
# tgt_reps = self.encode_input(tgt) if tgt else None # (bsz_per_device, dim)
# if qry_reps is None or tgt_reps is None:
# return {"qry_reps": qry_reps, "tgt_reps": tgt_reps}
# if self.is_ddp:
# all_qry_reps = self._dist_gather_tensor(qry_reps)
# all_tgt_reps = self._dist_gather_tensor(tgt_reps)
# else:
# all_qry_reps = qry_reps
# all_tgt_reps = tgt_reps
# scores = self.compute_similarity(all_qry_reps, all_tgt_reps)
# scores = scores.view(all_qry_reps.size(0), -1)
# target = torch.arange(scores.size(0), device=scores.device, dtype=torch.long)
# target = target * (all_qry_reps.size(0) // all_tgt_reps.size(0))
# loss = self.cross_entropy(scores / self.temperature, target)
# if self.is_ddp:
# loss = loss * self.world_size
# return loss
# def _dist_gather_tensor(self, t: Tensor):
# t = t.contiguous()
# all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
# dist.all_gather(all_tensors, t)
# all_tensors[self.process_rank] = t
# all_tensors = torch.cat(all_tensors, dim=0)
# return all_tensors
# def compute_similarity(self, q_reps, p_reps):
# return torch.matmul(q_reps, p_reps.transpose(0, 1))
from typing import Dict
import torch
import torch.distributed as dist
from torch import nn, Tensor
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig
from peft import LoraConfig, get_peft_model, PeftModel
from src.model.processor import QWEN2_5_VL_TOKENSELECTION
from src.arguments import ModelArguments, TrainingArguments
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, \
backbone2model, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V
from src.arguments import ModelArguments
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, INTERNVIDEO2, \
QWEN2_VL_TOKENSELECTION, backbone2model, GME, VLM_IMAGE_TOKENS, LamRA, LamRA_QWEN2_5, COLPALI
# 新增:分别引入 TokenPooling 版和 VisionZip 版
from src.model.vlm_backbone.qwen2_vl_token_pooling.modeling_qwen2_vl import (
Qwen2VLForConditionalGeneration as Qwen2VLForConditionalGenerationTokenPooling,
)
from src.model.vlm_backbone.qwen2_vl_visionzip.modeling_qwen2_vl import (
Qwen2VLForConditionalGeneration as Qwen2VLForConditionalGenerationVisionZip,
)
from src.model.vlm_backbone.qwen2_5_vl_token_pooling.modeling_qwen2_5_vl import (
Qwen2_5_VLForConditionalGeneration as Qwen2_5VLForConditionalGenerationTokenPooling,
)
from src.model.vlm_backbone.qwen2_5_vl_visionzip.modeling_qwen2_5_vl import (
Qwen2_5_VLForConditionalGeneration as Qwen2_5VLForConditionalGenerationVisionZip,
)
from src.model.baseline_backbone.colpali import ColPali
from src.model.baseline_backbone.gme.gme_inference import GmeQwen2VL
from src.model.baseline_backbone.lamra.lamra_inference import LamRAQwen2VL
from src.model.baseline_backbone.lamra.lamra_qwen25_inference import LamRAQwen25VL
from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM
from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration
from transformers import modeling_utils
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", 'rowwise']
def _ensure_pad_token_id_on_model(base_model):
"""
Ensure base_model.config.pad_token_id is a valid int.
Fallback order: config.pad_token_id -> config.eos_token_id -> 0
Also sync generation_config.pad_token_id if present.
"""
pad_id = getattr(base_model.config, "pad_token_id", None)
if pad_id is None:
pad_id = getattr(base_model.config, "eos_token_id", None)
if pad_id is None:
pad_id = 0
base_model.config.pad_token_id = pad_id
gen_cfg = getattr(base_model, "generation_config", None)
if gen_cfg is not None and getattr(gen_cfg, "pad_token_id", None) is None:
gen_cfg.pad_token_id = base_model.config.pad_token_id
class MMEBModel(nn.Module):
TRANSFORMER_CLS = AutoModelForCausalLM
def __init__(self,
encoder: PreTrainedModel,
pooling: str = 'last',
normalize: bool = False,
temperature: float = 0.02,
):
super().__init__()
self.config = encoder.config
self.encoder = encoder
self.pooling = pooling
self.normalize = normalize
self.temperature = temperature
self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')
self.is_ddp = dist.is_initialized()
if self.is_ddp:
self.process_rank = dist.get_rank()
self.world_size = dist.get_world_size()
@property
def device(self):
try:
return next(self.parameters()).device
except StopIteration:
return torch.device("cuda" if torch.cuda.is_available() else "cpu")
def encode_input(self, input):
if getattr(self, "model_backbone", None) == INTERNVIDEO2:
if "input_ids" in input.keys():
# text side
text_output = self.encoder.get_text_encoder()(
input["input_ids"],
attention_mask=input["attention_mask"],
return_dict=True,
mode="text",
)
text_embeds = text_output.last_hidden_state
pooled_text_embeds = text_embeds[:, 0]
pooled_output = self.encoder.text_proj(pooled_text_embeds)
pooled_output /= pooled_output.norm(dim=-1, keepdim=True)
return pooled_output
else:
_, vfeat = self.encoder.encode_vision(input["pixel_values"], test=True)
vfeat = self.encoder.vision_proj(vfeat)
vfeat /= vfeat.norm(dim=-1, keepdim=True)
return vfeat
elif getattr(self, "model_backbone", None) in [GME, LamRA, LamRA_QWEN2_5]:
# pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
texts = [text.replace(VLM_IMAGE_TOKENS[QWEN2_VL] + '\n', '') for text in input["texts"]] # we are actually passing video queries so this should not happen
images = []
for imgs in input['images']:
# if multi images are given, select the middle frame only
if isinstance(imgs, list):
imgs = imgs[len(imgs) // 2]
assert not isinstance(imgs, list) # make sure we have extracted the middle frame and it is no longer a list
images.append(imgs)
else:
images.append(imgs)
pooled_output = self.encoder.get_fused_embeddings(texts=texts, images=images)
return pooled_output
elif getattr(self, "model_backbone", None) == COLPALI:
pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
return pooled_output
elif getattr(self, "model_backbone", None) == LLAVA_NEXT:
input['pixel_values'] = input['pixel_values'].squeeze(dim=1)
input['image_sizes'] = input['image_sizes'].squeeze(dim=1)
hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
hidden_states = hidden_states.hidden_states[-1]
pooled_output = self._pooling(hidden_states, input['attention_mask'])
return pooled_output
else:
outputs = self.encoder(**input, return_dict=True, output_hidden_states=True)
last_hidden = outputs.hidden_states[-1] # [B, L', D](VisionZip 后 L' 可能变短)
# 优先使用模型 forward 返回的 post attention_mask;没有则回退到输入 mask
post_mask = getattr(outputs, "attention_mask", None)
src_mask = input.get("attention_mask", None)
use_mask = post_mask if (post_mask is not None) else src_mask
pooled_output = self._pooling(last_hidden, use_mask)
return pooled_output
def _pooling(self, last_hidden_state, attention_mask):
"""
健壮的 eos pooling:
- 若 attention_mask 为空或长度与 last_hidden_state 不一致,则回退到每样本最后一位(左 padding 默认成立)
- 正常情况下用 mask.sum(dim=1)-1 取有效最后位,并做 clamp 防越界
"""
if self.pooling in ('last', 'eos'):
B, L, D = last_hidden_state.shape
device = last_hidden_state.device
# 回退条件:无 mask 或长度不匹配
if (attention_mask is None) or (attention_mask.shape[1] != L):
reps = last_hidden_state[:, -1, :]
else:
# 计算每行有效长度(>=1),并转换为有效索引 [0, L-1]
# 注意:attention_mask 可能是 float/bfloat16,统一转 long 计算
valid_len = attention_mask.to(torch.long).sum(dim=1) # [B]
eos_idx = (valid_len - 1).clamp(min=0, max=L - 1) # [B]
reps = last_hidden_state[torch.arange(B, device=device), eos_idx, :]
else:
raise NotImplementedError
if self.normalize:
reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
return reps
@classmethod
def build(cls, model_args: ModelArguments, **kwargs):
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
model_backbone = get_backbone_name(hf_config=config)
print_master(f'Loading backbone [{model_backbone}] from {model_args.model_name}')
base_model = None # <-- ensure defined before branches
# Loading the base model
if model_backbone == PHI3V:
config._attn_implementation = "eager"
config.padding_side = "right"
config.use_cache = False
base_model = Phi3VForCausalLM.from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_backbone == LLAVA_NEXT:
config.use_cache = False
config.padding_side = "left"
base_model = LlavaNextForConditionalGeneration.from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_backbone in [QWEN2_VL, QWEN2_5_VL]:
config._attn_implementation = "flash_attention_2"
config.padding_side = "left"
config.use_cache = False
mode = getattr(model_args, "vision_compression", "token_pooling")
# ========= Qwen2-VL =========
if model_backbone == QWEN2_VL:
if mode == "token_pooling":
BaseCls = Qwen2VLForConditionalGenerationTokenPooling
print_master("[VisionCompression] Qwen2-VL using TokenPooling modeling")
elif mode == "visionzip":
BaseCls = Qwen2VLForConditionalGenerationVisionZip
print_master("[VisionCompression] Qwen2-VL using VisionZip modeling")
else: # "none" 或未知
BaseCls = backbone2model[model_backbone]
print_master(f"[VisionCompression] Qwen2-VL using vanilla backbone (mode={mode})")
# ========= Qwen2.5-VL =========
elif model_backbone == QWEN2_5_VL:
if mode == "token_pooling":
BaseCls = Qwen2_5VLForConditionalGenerationTokenPooling
print_master("[VisionCompression] Qwen2.5-VL using TokenPooling modeling")
elif mode == "visionzip":
BaseCls = Qwen2_5VLForConditionalGenerationVisionZip
print_master("[VisionCompression] Qwen2.5-VL using VisionZip modeling")
else:
BaseCls = backbone2model[model_backbone]
print_master(f"[VisionCompression] Qwen2.5-VL using vanilla backbone (mode={mode})")
# =============================
base_model = BaseCls.from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_backbone in [QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION]:
config._attn_implementation = "flash_attention_2"
config.padding_side = "left"
config.use_cache = False
from .utils import parse_layer_type
lm_qwen_layer = 28
vis_qwen_layer = 32
lm_skip_layer = parse_layer_type(model_args.lm_skip_layer, lm_qwen_layer)
vis_skip_layer = parse_layer_type(model_args.vis_skip_layer, vis_qwen_layer)
base_model = backbone2model[model_backbone].from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
lm_skip_layer=lm_skip_layer,
vis_skip_layer=vis_skip_layer,
)
else:
config.use_cache = False
base_model = cls.TRANSFORMER_CLS.from_pretrained(
model_args.model_name, **kwargs, config=config,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
# <-- call after base_model is assigned
_ensure_pad_token_id_on_model(base_model)
# Build MMEBModel
if model_args.lora:
print_master(f'Loading lora adapter from {base_model}')
lora_config = LoraConfig(
r=model_args.lora_r,
lora_alpha=model_args.lora_alpha,
target_modules=model_args.lora_target_modules.split(','),
lora_dropout=model_args.lora_dropout,
init_lora_weights="gaussian",
use_dora=True,
inference_mode=False
)
lora_model = get_peft_model(base_model, lora_config)
model = cls(
encoder=lora_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
else:
model = cls(
encoder=base_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
return model
@classmethod
def load(cls, model_args: ModelArguments, is_trainable=True, **kwargs):
# Loading the base model
model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
if not hasattr(model_args, "model_backbone") or not model_args.model_backbone:
model_backbone = get_backbone_name(hf_config=config, model_type=model_args.model_type)
setattr(model_args, 'model_backbone', model_backbone)
print_master(f'Loading backbone [{model_args.model_backbone}] from {model_name_or_path}')
base_model = None # <-- ensure defined before branches
if model_args.model_backbone in {LLAVA_NEXT, QWEN2_VL, QWEN2_5_VL, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V}:
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config._attn_implementation = "flash_attention_2"
if hasattr(config, "vision_config") and config.vision_config is not None:
config.vision_config._attn_implementation = "flash_attention_2"
mode = getattr(model_args, "vision_compression", "token_pooling")
# ========= Qwen2-VL =========
if model_args.model_backbone == QWEN2_VL:
if mode == "token_pooling":
BaseCls = Qwen2VLForConditionalGenerationTokenPooling
print_master("[VisionCompression-load] Qwen2-VL using TokenPooling modeling")
elif mode == "visionzip":
BaseCls = Qwen2VLForConditionalGenerationVisionZip
print_master("[VisionCompression-load] Qwen2-VL using VisionZip modeling")
else:
BaseCls = backbone2model[model_args.model_backbone]
print_master(f"[VisionCompression-load] Qwen2-VL using vanilla backbone (mode={mode})")
# ========= Qwen2.5-VL =========
elif model_args.model_backbone == QWEN2_5_VL:
if mode == "token_pooling":
BaseCls = Qwen2_5VLForConditionalGenerationTokenPooling
print_master("[VisionCompression-load] Qwen2.5-VL using TokenPooling modeling")
elif mode == "visionzip":
BaseCls = Qwen2_5VLForConditionalGenerationVisionZip
print_master("[VisionCompression-load] Qwen2.5-VL using VisionZip modeling")
else:
BaseCls = backbone2model[model_args.model_backbone]
print_master(f"[VisionCompression-load] Qwen2.5-VL using vanilla backbone (mode={mode})")
# 其它 backbone 走原来的 mapping
else:
BaseCls = backbone2model[model_args.model_backbone]
base_model = BaseCls.from_pretrained(
model_args.model_name,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
config=config,
)
elif model_args.model_backbone == PHI3V:
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config.use_cache = False
config.padding_side = "right"
base_model = Phi3VForCausalLM.from_pretrained(
model_args.model_name, **kwargs, config=config,
torch_dtype=torch.bfloat16, trust_remote_code=True
)
base_model.padding_side = "right"
elif model_args.model_backbone == INTERNVIDEO2:
print_master(f'Loading backbone [{model_args.model_backbone}] from {"src/model/vlm_backbone/internvideo2/"}')
config = AutoConfig.from_pretrained("src/model/vlm_backbone/internvideo2/", trust_remote_code=True)
base_model = backbone2model[model_args.model_backbone].from_pretrained(
"src/model/vlm_backbone/internvideo2/", config=config, trust_remote_code=True
)
elif model_args.model_backbone == GME:
base_model = GmeQwen2VL(model_args.model_name, processor=kwargs['processor'])
setattr(base_model, 'config', config)
elif model_args.model_backbone == LamRA:
base_model = LamRAQwen2VL(model_args.model_name)
setattr(base_model, 'config', config)
elif model_args.model_backbone == LamRA_QWEN2_5:
base_model = LamRAQwen25VL(model_args.model_name)
setattr(base_model, 'config', config)
elif model_args.model_backbone == COLPALI:
base_model = ColPali.from_pretrained(model_args.model_name)
setattr(base_model, 'config', config)
else:
# Loading external base model from HF
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config.use_cache = False
base_model = cls.TRANSFORMER_CLS.from_pretrained(
model_name_or_path, **kwargs, config=config,
torch_dtype=torch.bfloat16,
trust_remote_code=True
)
# <-- call after base_model is assigned
_ensure_pad_token_id_on_model(base_model)
# Building the model on top of the base
if model_args.lora:
print_master(f'Loading LoRA from {model_name_or_path}')
lora_config = LoraConfig.from_pretrained(model_name_or_path)
lora_model = PeftModel.from_pretrained(
base_model, model_name_or_path, config=lora_config, is_trainable=is_trainable
)
lora_model.load_adapter(model_name_or_path, lora_model.active_adapter, is_trainable=is_trainable)
if not is_trainable:
lora_model = lora_model.merge_and_unload()
model = cls(
encoder=lora_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
else:
model = cls(
encoder=base_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
model.model_backbone = model_args.model_backbone
return model
def save(self, output_dir: str):
self.encoder.save_pretrained(output_dir)
def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs):
qry_reps = self.encode_input(qry) if qry else None # (bsz_per_device, dim)
tgt_reps = self.encode_input(tgt) if tgt else None # (bsz_per_device, dim)
if qry_reps is None or tgt_reps is None:
return {"qry_reps": qry_reps, "tgt_reps": tgt_reps}
if self.is_ddp:
all_qry_reps = self._dist_gather_tensor(qry_reps)
all_tgt_reps = self._dist_gather_tensor(tgt_reps)
else:
all_qry_reps = qry_reps
all_tgt_reps = tgt_reps
scores = self.compute_similarity(all_qry_reps, all_tgt_reps)
scores = scores.view(all_qry_reps.size(0), -1)
target = torch.arange(scores.size(0), device=scores.device, dtype=torch.long)
target = target * (all_qry_reps.size(0) // all_tgt_reps.size(0))
loss = self.cross_entropy(scores / self.temperature, target)
if self.is_ddp:
loss = loss * self.world_size
return loss
def _dist_gather_tensor(self, t: Tensor):
t = t.contiguous()
all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
dist.all_gather(all_tensors, t)
all_tensors[self.process_rank] = t
all_tensors = torch.cat(all_tensors, dim=0)
return all_tensors
def compute_similarity(self, q_reps, p_reps):
return torch.matmul(q_reps, p_reps.transpose(0, 1)) |