File size: 26,369 Bytes
0a937d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
from typing import Dict
import torch
import torch.distributed as dist
from torch import nn, Tensor
import torch.nn.functional as F  # 如果文件顶部没引入的话
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig
from peft import LoraConfig, get_peft_model, PeftModel
from src.model.processor import QWEN2_5_VL_TOKENSELECTION
from src.arguments_multi_layer import ModelArguments, TrainingArguments
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, \
    backbone2model, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V

from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, INTERNVIDEO2, \
    QWEN2_VL_TOKENSELECTION, backbone2model, GME, VLM_IMAGE_TOKENS, LamRA, LamRA_QWEN2_5, COLPALI
from src.model.baseline_backbone.colpali import ColPali
from src.model.baseline_backbone.gme.gme_inference import GmeQwen2VL
from src.model.baseline_backbone.lamra.lamra_inference import LamRAQwen2VL
from src.model.baseline_backbone.lamra.lamra_qwen25_inference import LamRAQwen25VL
from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM
from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration

from transformers import modeling_utils
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
    modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", 'rowwise']


class MMEBModel(nn.Module):
    TRANSFORMER_CLS = AutoModelForCausalLM

    def __init__(self,
                 encoder: PreTrainedModel,
                 pooling: str = 'last',
                 normalize: bool = False,
                 temperature: float = 0.02,
                 ):
        super().__init__()
        self.config = encoder.config
        self.encoder = encoder
        self.pooling = pooling
        self.normalize = normalize
        self.temperature = temperature
        self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')
        self.is_ddp = dist.is_initialized()
        if self.is_ddp:
            self.process_rank = dist.get_rank()
            self.world_size = dist.get_world_size()
        self.layer_indices = [20, -1]
        self.supervise_layers = [20, -1]   # -1 必须表示最后一层
        self.supervise_weights = [0.15, 0.85]  # 与 supervise_layers 对齐

    @property
    def device(self):
        # 尽量稳妥地拿到设备
        try:
            return next(self.encoder.parameters()).device
        except StopIteration:
            try:
                return next(self.parameters()).device
            except StopIteration:
                return torch.device("cpu")
            
    def _has_image(self, batch_input):
        """
        基于输入是否包含像素张量来判断是否含图像。
        True:存在 'pixel_values' 且非None且元素数>0;或存在 'images'(部分backbone)
        False:否则
        """
        B = None
        if 'attention_mask' in batch_input:
            B = batch_input['attention_mask'].shape[0]
        elif 'input_ids' in batch_input:
            B = batch_input['input_ids'].shape[0]

        has_img = False
        if 'pixel_values' in batch_input and batch_input['pixel_values'] is not None:
            # pixel_values 形状可能是 [B, ...] 或 [B, 1, ...]
            pv = batch_input['pixel_values']
            has_img = pv.numel() > 0
            if B is None:
                B = pv.shape[0]
        elif 'images' in batch_input and batch_input['images'] is not None:
            has_img = True  # 列表/占位,视为包含图像

        if B is None:
            # 兜底:看作不含图像
            return torch.zeros(1, dtype=torch.float32, device=self.encoder.device)
        val = 1.0 if has_img else 0.0
        return torch.full((B,), fill_value=val, dtype=torch.float32, device=self.encoder.device)

    @staticmethod
    def _masked_mean(loss_vec: Tensor, weight_mask: Tensor) -> Tensor:
        denom = torch.clamp(weight_mask.sum(), min=1.0)
        return (loss_vec * weight_mask).sum() / denom

    def _normalize_layers(self, hs_len: int, layers: list[int]) -> list[int]:
        Lmax = hs_len - 1
        out = []
        for idx in layers:
            if idx < 0:
                idx = hs_len + idx
            idx = max(1, min(idx, Lmax))
            out.append(idx)
        if (hs_len - 1) not in out:
            out.append(hs_len - 1)
        return out

    def _encode_multi(self, input):
        """
        通用多层编码:返回 [B, K, D],K=len(self.supervise_layers,经规范化且包含最后一层)。
        """
        mb = getattr(self, "model_backbone", None)

        def norm(x):
            return F.normalize(x, p=2, dim=-1) if self.normalize else x

        # 支持 hidden_states 的通用分支
        if mb not in [GME, LamRA, LamRA_QWEN2_5, INTERNVIDEO2, COLPALI]:
            out = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hs = out.hidden_states  # list/tuple, len = L+1
            idxs = self._normalize_layers(len(hs), list(dict.fromkeys(self.supervise_layers)))  # 去重保序
            reps = []
            for idx in idxs:
                r = self._pooling(hs[idx], input['attention_mask'])
                reps.append(norm(r))
            return torch.stack(reps, dim=1)  # [B, K, D]

        # LLAVA_NEXT:仍可拿 hidden_states
        if mb == LLAVA_NEXT:
            input = dict(input)
            input['pixel_values'] = input['pixel_values'].squeeze(dim=1)
            input['image_sizes'] = input['image_sizes'].squeeze(dim=1)
            out = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hs = out.hidden_states
            idxs = self._normalize_layers(len(hs), list(dict.fromkeys(self.supervise_layers)))
            reps = []
            for idx in idxs:
                r = self._pooling(hs[idx], input['attention_mask'])
                reps.append(norm(r))
            return torch.stack(reps, dim=1)

        # 其他不支持 hidden_states 的backbone:退化为重复最后一层
        last = self.encode_input(input)  # [B, D]
        last = norm(last)
        K = len(self.supervise_layers)
        return torch.stack([last for _ in range(K)], dim=1)  # [B, K, D]

    # def encode_input(self, input):
    def encode_input(self, input, layer_indices=None):
        if getattr(self, "model_backbone", None) == INTERNVIDEO2:
            if "input_ids" in input.keys():
                # text side
                text_output = self.encoder.get_text_encoder()(
                    input["input_ids"],
                    attention_mask=input["attention_mask"],
                    return_dict=True,
                    mode="text",
                )
                text_embeds = text_output.last_hidden_state
                pooled_text_embeds = text_embeds[:, 0]
                pooled_output = self.encoder.text_proj(pooled_text_embeds)
                pooled_output /= pooled_output.norm(dim=-1, keepdim=True)
                return pooled_output
            else:
                _, vfeat = self.encoder.encode_vision(input["pixel_values"], test=True)
                vfeat = self.encoder.vision_proj(vfeat)
                vfeat /= vfeat.norm(dim=-1, keepdim=True)
                return vfeat
        elif getattr(self, "model_backbone", None) in [GME, LamRA, LamRA_QWEN2_5]:
            # pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
            texts = [text.replace(VLM_IMAGE_TOKENS[QWEN2_VL] + '\n', '') for text in input["texts"]] # we are actually passing video queries so this should not happen
            images = []
            for imgs in input['images']:
                # if multi images are given, select the middle frame only
                if isinstance(imgs, list):
                    imgs = imgs[len(imgs) // 2]
                    assert not isinstance(imgs, list) # make sure we have extracted the middle frame and it is no longer a list
                    images.append(imgs)
                else:
                    images.append(imgs)
            pooled_output = self.encoder.get_fused_embeddings(texts=texts, images=images)
            return pooled_output
        elif getattr(self, "model_backbone", None) == COLPALI:
            pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
            return pooled_output
        elif getattr(self, "model_backbone", None) == LLAVA_NEXT:
            input['pixel_values'] = input['pixel_values'].squeeze(dim=1)
            input['image_sizes'] = input['image_sizes'].squeeze(dim=1)
            hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hidden_states = hidden_states.hidden_states[-1]
            pooled_output = self._pooling(hidden_states, input['attention_mask'])
            return pooled_output
        else:
            # 默认HF模型:支持 hidden_states
            out = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hs_list = out.hidden_states
            if layer_indices is None or isinstance(layer_indices, int):
                h = hs_list[-1] if layer_indices is None else hs_list[layer_indices]
                reps = self._pooling(h, input['attention_mask'])
                return reps
            else:
                reps_list = []
                for idx in layer_indices:
                    h = hs_list[idx]
                    r = self._pooling(h, input['attention_mask'])
                    reps_list.append(r)
                reps = torch.stack(reps_list, dim=1)  # [B, L, D]
                return reps

    def _pooling(self, last_hidden_state, attention_mask):
        if self.pooling == 'last' or self.pooling == 'eos':
            left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
            batch_size = last_hidden_state.shape[0]
            if left_padding:
                # Get the vectors at the last position
                reps = last_hidden_state[torch.arange(batch_size), -1, :]
            else:
                # Calculate last 1 position in the original tensor
                eos_indices = attention_mask.sum(dim=1) - 1
                # Get the vectors at the last 1 position of each attention mask
                reps = last_hidden_state[
                    torch.arange(batch_size, device=last_hidden_state.device), eos_indices]
        else:
            raise NotImplementedError
        if self.normalize:
            reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
        return reps

    @classmethod
    def build(cls, model_args: ModelArguments, **kwargs):
        config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
        variant = getattr(config, "backbone_variant", None)
        if variant == "layerprune":
            model_backbone = "QWEN2_VL_LayerPrune"
        else:
            model_backbone = get_backbone_name(hf_config=config)
        print_master(f'Loading backbone [{model_backbone}] from {model_args.model_name}')
        # Loading the base model
        if model_backbone == PHI3V:
            config._attn_implementation = "eager"
            config.padding_side = "right"
            config.use_cache = False
            base_model = Phi3VForCausalLM.from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone == LLAVA_NEXT:
            config.use_cache = False
            config.padding_side = "left"
            base_model = LlavaNextForConditionalGeneration.from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in [QWEN2_VL, QWEN2_5_VL]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False
            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in ["QWEN2_VL_LayerPrune"]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False
            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in [QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False

            from .utils import parse_layer_type
            lm_qwen_layer = 28
            vis_qwen_layer = 32
            lm_skip_layer = parse_layer_type(model_args.lm_skip_layer, lm_qwen_layer)
            vis_skip_layer = parse_layer_type(model_args.vis_skip_layer, vis_qwen_layer)

            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                lm_skip_layer=lm_skip_layer,
                vis_skip_layer=vis_skip_layer,
            )
        else:
            config.use_cache = False
            base_model = cls.TRANSFORMER_CLS.from_pretrained(
                model_args.model_name, **kwargs, config=config,
                attn_implementation="flash_attention_2",
                torch_dtype=torch.bfloat16,
                trust_remote_code=True)

        if model_args.lora:
            print_master(f'Loading lora adapter from {base_model}')
            lora_config = LoraConfig(
                r=model_args.lora_r,
                lora_alpha=model_args.lora_alpha,
                target_modules=model_args.lora_target_modules.split(','),
                lora_dropout=model_args.lora_dropout,
                init_lora_weights="gaussian",
                use_dora=True,
                inference_mode=False
            )
            lora_model = get_peft_model(base_model, lora_config)
            model = cls(
                encoder=lora_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        else:
            model = cls(
                encoder=base_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        # 在 build(...) 末尾(return model 前)添加
        def _parse_list(val, tp=float):
            if val is None: return None
            if isinstance(val, (list, tuple)): return [tp(x) for x in val]
            s = str(val).strip()
            if s == "": return None
            return [tp(v.strip()) for v in s.split(",") if v.strip() != ""]

        layers = _parse_list(getattr(model_args, "supervise_layers", None), tp=int)
        weights = _parse_list(getattr(model_args, "supervise_weights", None), tp=float)

        if layers is None:
            # fallback 到旧的二层设置
            layers = [getattr(model_args, 'dual_layer_idx', 20), -1]
        if -1 not in layers:
            layers = list(layers) + [-1]  # 强制包含最后一层

        if weights is None or len(weights) != len(layers):
            # 若未提供或长度不匹配,则做一个合理默认:最后一层占大头
            K = len(layers)
            base = [1.0/(K-1)]*(K-1) if K>1 else [1.0]
            weights = base + [max(0.0, 1.0 - sum(base))]

        # 归一化
        s = sum(max(0.0, w) for w in weights)
        weights = [max(0.0, w)/s for w in weights]

        setattr(model, 'supervise_layers', layers)
        setattr(model, 'supervise_weights', weights)
        # 新增:读取门控与蒸馏超参
        setattr(model, 'gate_by_image', getattr(model_args, 'gate_by_image', True))
        setattr(model, 'misalign_mid_ce', float(getattr(model_args, 'misalign_mid_ce', 0.0)))
        setattr(model, 'distill_beta', float(getattr(model_args, 'distill_beta', 1.0)))
        setattr(model, 'distill_on_aligned', bool(getattr(model_args, 'distill_on_aligned', False)))
        return model


    @classmethod
    def load(cls, model_args: ModelArguments, is_trainable=True, **kwargs):
        # Loading the base model
        model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name
        config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
        if not hasattr(model_args, "model_backbone") or not model_args.model_backbone:
            model_backbone = get_backbone_name(hf_config=config, model_type=model_args.model_type)
            setattr(model_args, 'model_backbone', model_backbone)
        print_master(f'Loading backbone [{model_args.model_backbone}] from {model_name_or_path}')
        if model_args.model_backbone in {LLAVA_NEXT, QWEN2_VL, QWEN2_5_VL, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V}:
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config._attn_implementation = "flash_attention_2"
            config.vision_config._attn_implementation = "flash_attention_2"
            base_model = backbone2model[model_args.model_backbone].from_pretrained(
                model_args.model_name,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                config=config
            )
        elif model_args.model_backbone == PHI3V:
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            config.padding_side = "right"
            base_model = Phi3VForCausalLM.from_pretrained(model_args.model_name, **kwargs, config=config,
                                                          torch_dtype=torch.bfloat16, trust_remote_code=True)
            base_model.padding_side = "right"
        elif model_args.model_backbone == INTERNVIDEO2:
            print_master(f'Loading backbone [{model_args.model_backbone}] from {"src/model/vlm_backbone/internvideo2/"}')
            config = AutoConfig.from_pretrained("src/model/vlm_backbone/internvideo2/",
                                                trust_remote_code=True)
            base_model = backbone2model[model_args.model_backbone].from_pretrained("src/model/vlm_backbone/internvideo2/", config=config,
                                                                                   trust_remote_code=True)
        elif model_args.model_backbone == GME:
            base_model = GmeQwen2VL(model_args.model_name, processor=kwargs['processor'])
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == LamRA:
            base_model = LamRAQwen2VL(model_args.model_name)
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == LamRA_QWEN2_5:
            base_model = LamRAQwen25VL(model_args.model_name)
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == COLPALI:
            base_model = ColPali.from_pretrained(model_args.model_name)
            setattr(base_model, 'config', config)
        else:
            # Loading external base model from HF
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            base_model = cls.TRANSFORMER_CLS.from_pretrained(
                model_name_or_path, **kwargs, config=config,
                torch_dtype=torch.bfloat16,
                trust_remote_code=True)

        # Building the model on top of the base
        if model_args.lora:
            print_master(f'Loading LoRA from {model_name_or_path}')
            lora_config = LoraConfig.from_pretrained(model_name_or_path)
            lora_model = PeftModel.from_pretrained(base_model, model_name_or_path, config=lora_config, is_trainable=is_trainable)
            lora_model.load_adapter(model_name_or_path, lora_model.active_adapter, is_trainable=is_trainable)
            if not is_trainable:
                lora_model = lora_model.merge_and_unload()
            model = cls(
                encoder=lora_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        else:
            model = cls(
                encoder=base_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )

        model.model_backbone = model_args.model_backbone
        return model

    def save(self, output_dir: str):
        self.encoder.save_pretrained(output_dir)

    def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs):
        # GradCache:只给一侧 -> 返回多层表示
        if qry is not None and tgt is None:
            qry_reps = self._encode_multi(qry)   # [B, K, D]
            return {"qry_reps": qry_reps, "tgt_reps": None}
        if tgt is not None and qry is None:
            tgt_reps = self._encode_multi(tgt)   # [B, K, D]
            return {"qry_reps": None, "tgt_reps": tgt_reps}

        # 非 GradCache:两侧同时给,直接算逐层配对的加权 CE
        q_multi = self._encode_multi(qry)  # [B, K, D]
        p_multi = self._encode_multi(tgt)  # [B, K, D]

        # DDP gather
        if self.is_ddp:
            q_multi_all = self._dist_gather_tensor(q_multi)  # [B*, K, D]
            p_multi_all = self._dist_gather_tensor(p_multi)  # [B*, K, D]
        else:
            q_multi_all, p_multi_all = q_multi, p_multi

        Bglob, K, D = q_multi_all.shape
        assert p_multi_all.shape[:2] == (Bglob, K), f"Shape mismatch: q {q_multi_all.shape}, p {p_multi_all.shape}"
        target = torch.arange(Bglob, device=q_multi_all.device, dtype=torch.long)

        w = torch.tensor(self.supervise_weights, dtype=torch.float32, device=q_multi_all.device)
        w = torch.clamp(w, min=0)
        w = w / max(w.sum().item(), 1e-8)

        # 计算对齐/非对齐门控:同为含图像或同为不含图像 => aligned
        # 先在本rank上做,再all_gather与 q_multi_all/p_multi_all 对齐
        q_has_img_local = self._has_image(qry)   # [B_local]
        p_has_img_local = self._has_image(tgt)   # [B_local]
        if self.is_ddp:
            q_has_img = self._dist_gather_tensor(q_has_img_local)
            p_has_img = self._dist_gather_tensor(p_has_img_local)
        else:
            q_has_img, p_has_img = q_has_img_local, p_has_img_local

        aligned_mask = (q_has_img == p_has_img).float()           # [Bglob]
        misaligned_mask = 1.0 - aligned_mask

        loss = 0.0
        last_idx = K - 1

        # 1) 最后一层:始终用对比损失
        logits_last = torch.matmul(q_multi_all[:, last_idx, :], p_multi_all[:, last_idx, :].transpose(0, 1)) / self.temperature
        loss_last = self.cross_entropy(logits_last, target)
        loss = loss + w[last_idx] * loss_last

        # 2) 中间层:对齐→对比;非对齐→自蒸馏(可选极小对比)
        for k in range(0, last_idx):
            # 2.1 中间层对比(per-sample masked mean)
            logits_k = torch.matmul(q_multi_all[:, k, :], p_multi_all[:, k, :].transpose(0, 1)) / self.temperature
            loss_vec = torch.nn.functional.cross_entropy(logits_k, target, reduction='none')  # [Bglob]

            if getattr(self, 'gate_by_image', True):
                # 对齐样本:权重=1;非对齐样本:权重=misalign_mid_ce(默认0)
                weight_mask = aligned_mask + self.misalign_mid_ce * misaligned_mask
            else:
                # 不门控:全样本权重=1
                weight_mask = torch.ones_like(aligned_mask)

            mid_ce = self._masked_mean(loss_vec, weight_mask)

            # 2.2 中间层自蒸馏(单样本,teacher stop-grad)
            do_distill = (self.distill_beta is not None) and (self.distill_beta > 0.0)
            if do_distill:
                q_teacher = q_multi_all[:, last_idx, :].detach()
                p_teacher = p_multi_all[:, last_idx, :].detach()
                # 余弦相似度 -> (1 - cos)
                dist_q = 1.0 - torch.nn.functional.cosine_similarity(q_multi_all[:, k, :], q_teacher, dim=-1)  # [Bglob]
                dist_p = 1.0 - torch.nn.functional.cosine_similarity(p_multi_all[:, k, :], p_teacher, dim=-1)  # [Bglob]
                dist_vec = dist_q + dist_p  # [Bglob]

                if getattr(self, 'gate_by_image', True):
                    if getattr(self, 'distill_on_aligned', False):
                        dist_mask = torch.ones_like(aligned_mask)  # 对齐与非对齐都蒸馏
                    else:
                        dist_mask = misaligned_mask               # 仅非对齐蒸馏
                else:
                    dist_mask = torch.ones_like(aligned_mask)

                mid_distill = self._masked_mean(dist_vec, dist_mask)
                mid_total = mid_ce + self.distill_beta * mid_distill
            else:
                mid_total = mid_ce

            loss = loss + w[k] * mid_total

        if self.is_ddp:
            loss = loss * self.world_size

        return loss

    def _dist_gather_tensor(self, t: Tensor):
        t = t.contiguous()
        all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
        dist.all_gather(all_tensors, t)
        all_tensors[self.process_rank] = t
        all_tensors = torch.cat(all_tensors, dim=0)
        return all_tensors

    def compute_similarity(self, q_reps, p_reps):
        return torch.matmul(q_reps, p_reps.transpose(0, 1))