File size: 28,020 Bytes
0a937d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 |
from typing import Dict
import os
import torch
import torch.distributed as dist
from torch import nn, Tensor
import torch.nn.functional as F # 如果文件顶部没引入的话
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig
from peft import LoraConfig, get_peft_model, PeftModel
from src.model.processor import QWEN2_5_VL_TOKENSELECTION
from src.arguments_multi_layer import ModelArguments, TrainingArguments
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, \
backbone2model, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, INTERNVIDEO2, \
QWEN2_VL_TOKENSELECTION, backbone2model, GME, VLM_IMAGE_TOKENS, LamRA, LamRA_QWEN2_5, COLPALI
from src.model.baseline_backbone.colpali import ColPali
from src.model.baseline_backbone.gme.gme_inference import GmeQwen2VL
from src.model.baseline_backbone.lamra.lamra_inference import LamRAQwen2VL
from src.model.baseline_backbone.lamra.lamra_qwen25_inference import LamRAQwen25VL
from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM
from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration
from transformers import modeling_utils
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", 'rowwise']
from contextlib import contextmanager
class _AOPSwitch:
"""
Temporarily toggle encoder.aop_prune_config.enabled for one forward call.
"""
def __init__(self, module: nn.Module, enable: bool):
self.module = module
self.enable = bool(enable)
self._old = getattr(module, "aop_prune_config", None)
def __enter__(self):
# if no config set, nothing to do
if self._old is None:
return self
if not self.enable:
# disable only for this scope
if isinstance(self._old, dict):
cfg = dict(self._old)
cfg["enabled"] = False
setattr(self.module, "aop_prune_config", cfg)
else:
setattr(self.module, "aop_prune_config", None)
# if enable=True, keep as is
return self
def __exit__(self, exc_type, exc, tb):
# restore original
setattr(self.module, "aop_prune_config", self._old)
return False
class MMEBModel(nn.Module):
TRANSFORMER_CLS = AutoModelForCausalLM
def __init__(self,
encoder: PreTrainedModel,
pooling: str = 'last',
normalize: bool = False,
temperature: float = 0.02,
):
super().__init__()
self.config = encoder.config
self.encoder = encoder
self.pooling = pooling
self.normalize = normalize
self.temperature = temperature
self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')
self.is_ddp = dist.is_initialized()
if self.is_ddp:
self.process_rank = dist.get_rank()
self.world_size = dist.get_world_size()
self.layer_indices = [20, -1]
# 默认:一个或多个中间层 + 最后一层
self.supervise_layers = [20, -1] # -1 必须表示最后一层
self.supervise_weights = [0.15, 0.85] # 与 supervise_layers 对齐
@property
def device(self) -> torch.device:
try:
return next(self.parameters()).device
except StopIteration:
# 没有参数时兜底 CPU
return torch.device("cpu")
def _want_prune_for(self, side: str) -> bool:
"""
side: "qry" or "tgt"
"""
cfg = getattr(self.encoder, "aop_prune_config", None)
if not isinstance(cfg, dict) or not cfg.get("enabled", False):
return False
apply_to = str(cfg.get("apply_to", "both")).lower()
return (apply_to == "both") or (apply_to == side.lower())
def _normalize_layers(self, hs_len: int, layers: list[int]) -> list[int]:
Lmax = hs_len - 1
out = []
for idx in layers:
if idx < 0:
idx = hs_len + idx
idx = max(1, min(idx, Lmax))
out.append(idx)
if (hs_len - 1) not in out:
out.append(hs_len - 1)
return out
def _encode_multi(self, input):
"""
通用多层编码:返回 [B, K, D],K=len(self.supervise_layers,经规范化且包含最后一层)。
"""
mb = getattr(self, "model_backbone", None)
def norm(x):
return F.normalize(x, p=2, dim=-1) if self.normalize else x
# 支持 hidden_states 的通用分支(Qwen2-VL 等)
if mb not in [GME, LamRA, LamRA_QWEN2_5, INTERNVIDEO2, COLPALI]:
out = self.encoder(**input, return_dict=True, output_hidden_states=True)
hs_list = out.hidden_states # tuple/list, len = num_layers + 1(进入每层前的快照 + 最后norm)
# 剪裁后 attention_mask(若未剪裁则为 None)
post_mask = getattr(out, "attention_mask", None) # [B, L_post] or None
pre_mask = input['attention_mask'] # [B, L_pre]
# 规范化 supervise_layers,并确保包含最后一层
idxs = self._normalize_layers(len(hs_list), list(dict.fromkeys(self.supervise_layers)))
# 读取训练时的剪裁层(1-based)。剪裁发生在进入 cut_layer 前,所以 idx >= cut_layer+1 才会看到 post 形状
aop_cfg = getattr(self.encoder, "aop_prune_config", None)
cut_layer = None
if isinstance(aop_cfg, dict) and aop_cfg.get("enabled", False):
try:
cut_layer = int(aop_cfg.get("layer_idx") or 0)
if cut_layer <= 0:
cut_layer = None
except Exception:
cut_layer = None
reps = []
for idx in idxs:
# 选择该层使用的 mask
use_post = (post_mask is not None) and (cut_layer is not None) and (idx >= cut_layer + 1)
mask_this = post_mask if use_post else pre_mask
h = hs_list[idx] # [B, L_idx, D]
# 友好断言:若 mask 与 h 长度不一致,尝试回退到另一个 mask;否则兜底全1
if mask_this is not None and h.size(1) != mask_this.size(1):
if pre_mask is not None and pre_mask.size(1) == h.size(1):
mask_this = pre_mask
elif post_mask is not None and post_mask.size(1) == h.size(1):
mask_this = post_mask
else:
mask_this = torch.ones(h.size(0), h.size(1), dtype=torch.long, device=h.device)
r = self._pooling(h, mask_this)
reps.append(F.normalize(r, p=2, dim=-1) if self.normalize else r)
return torch.stack(reps, dim=1) # [B, K, D]
# def encode_input(self, input):
def encode_input(self, input, layer_indices=None):
if getattr(self, "model_backbone", None) == INTERNVIDEO2:
if "input_ids" in input.keys():
# text side
text_output = self.encoder.get_text_encoder()(
input["input_ids"],
attention_mask=input["attention_mask"],
return_dict=True,
mode="text",
)
text_embeds = text_output.last_hidden_state
pooled_text_embeds = text_embeds[:, 0]
pooled_output = self.encoder.text_proj(pooled_text_embeds)
pooled_output /= pooled_output.norm(dim=-1, keepdim=True)
return pooled_output
else:
_, vfeat = self.encoder.encode_vision(input["pixel_values"], test=True)
vfeat = self.encoder.vision_proj(vfeat)
vfeat /= vfeat.norm(dim=-1, keepdim=True)
return vfeat
elif getattr(self, "model_backbone", None) in [GME, LamRA, LamRA_QWEN2_5]:
# pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
texts = [text.replace(VLM_IMAGE_TOKENS[QWEN2_VL] + '\n', '') for text in input["texts"]] # we are actually passing video queries so this should not happen
images = []
for imgs in input['images']:
# if multi images are given, select the middle frame only
if isinstance(imgs, list):
imgs = imgs[len(imgs) // 2]
assert not isinstance(imgs, list) # make sure we have extracted the middle frame and it is no longer a list
images.append(imgs)
else:
images.append(imgs)
pooled_output = self.encoder.get_fused_embeddings(texts=texts, images=images)
return pooled_output
elif getattr(self, "model_backbone", None) == COLPALI:
pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
return pooled_output
elif getattr(self, "model_backbone", None) == LLAVA_NEXT:
input['pixel_values'] = input['pixel_values'].squeeze(dim=1)
input['image_sizes'] = input['image_sizes'].squeeze(dim=1)
hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
hidden_states = hidden_states.hidden_states[-1]
pooled_output = self._pooling(hidden_states, input['attention_mask'])
return pooled_output
else:
# 默认HF模型:支持 hidden_states(含 AOP 剪裁)
out = self.encoder(**input, return_dict=True, output_hidden_states=True)
hs_list = out.hidden_states
post_mask = getattr(out, "attention_mask", None) # [B, L_post] or None
pre_mask = input['attention_mask'] # [B, L_pre]
# === AOP_MONITOR:观测每个样本的剪枝前/后长度与有效保留率 ===
if os.getenv("AOP_MONITOR", "0") == "1":
try:
B = pre_mask.size(0) if pre_mask is not None else hs_list[-1].size(0)
# 全局长度
pre_len = pre_mask.sum(dim=1).detach().cpu().tolist() if pre_mask is not None else [hs_list[-1].size(1)] * B
post_len = post_mask.sum(dim=1).detach().cpu().tolist() if post_mask is not None else pre_len
# 最近一次采样到的 keep_ratio(trainer 写入 cfg)仅用于参考打印
aop_cfg = getattr(self.encoder, "aop_prune_config", None)
kr_t = aop_cfg.get("_last_sampled_keep_ratio_text") if isinstance(aop_cfg, dict) else None
kr_v = aop_cfg.get("_last_sampled_keep_ratio_vision") if isinstance(aop_cfg, dict) else None
# 文本/视觉细分(可选)
pre_txt_cnt = pre_vis_cnt = post_txt_cnt = post_vis_cnt = None
input_ids = input.get("input_ids", None)
if input_ids is not None and pre_mask is not None:
cfg = self.encoder.config
valid_pre = pre_mask.bool()
vis_pre = (input_ids == getattr(cfg, "image_token_id", -999))
if hasattr(cfg, "video_token_id") and cfg.video_token_id is not None and cfg.video_token_id >= 0:
vis_pre = vis_pre | (input_ids == cfg.video_token_id)
special_pre = torch.zeros_like(input_ids, dtype=torch.bool)
for name in ["bos_token_id", "eos_token_id", "pad_token_id"]:
tid = getattr(cfg, name, None)
if tid is not None and tid >= 0:
special_pre |= (input_ids == tid)
pre_vis_cnt = (vis_pre & valid_pre).sum(dim=1).detach().cpu().tolist()
pre_txt_cnt = (valid_pre & (~vis_pre) & (~special_pre)).sum(dim=1).detach().cpu().tolist()
vis_post_mask = getattr(out, "image_token_bool_masks", None)
txt_post_mask = getattr(out, "text_token_bool_masks", None)
if vis_post_mask is not None:
post_vis_cnt = vis_post_mask.sum(dim=1).detach().cpu().tolist()
if txt_post_mask is not None:
post_txt_cnt = txt_post_mask.sum(dim=1).detach().cpu().tolist()
# 限制打印批次数,避免刷屏
if not hasattr(self, "_aop_mon_prints"):
self._aop_mon_prints = 0
if self._aop_mon_prints < 3: # 仅前3个batch打印
print(f"[AOP][monitor] B={B} sampled: kr_text={kr_t}, kr_vision={kr_v}")
for b in range(min(B, 8)): # 仅打印前8条样本
preL = int(pre_len[b]); postL = int(post_len[b]); keep = (postL / (preL + 1e-9))
msg = f" b={b}: pre_len={preL}, post_len={postL}, keep={keep:.3f}"
if pre_txt_cnt is not None and post_txt_cnt is not None:
kt = (post_txt_cnt[b] / (pre_txt_cnt[b] + 1e-9)) if pre_txt_cnt[b] > 0 else float('nan')
msg += f", txt_keep={kt:.3f}"
if pre_vis_cnt is not None and post_vis_cnt is not None:
kv = (post_vis_cnt[b] / (pre_vis_cnt[b] + 1e-9)) if pre_vis_cnt[b] > 0 else float('nan')
msg += f", vis_keep={kv:.3f}"
print(msg)
self._aop_mon_prints += 1
except Exception as e:
# 避免影响训练流程
print(f"[AOP][monitor] warn: monitor failed with error: {e}")
def _pooling(self, last_hidden_state, attention_mask):
if self.pooling == 'last' or self.pooling == 'eos':
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
batch_size = last_hidden_state.shape[0]
if left_padding:
# Get the vectors at the last position
reps = last_hidden_state[torch.arange(batch_size), -1, :]
else:
# Calculate last 1 position in the original tensor
eos_indices = attention_mask.sum(dim=1) - 1
# Get the vectors at the last 1 position of each attention mask
reps = last_hidden_state[
torch.arange(batch_size, device=last_hidden_state.device), eos_indices]
else:
raise NotImplementedError
if self.normalize:
reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
return reps
@classmethod
def build(cls, model_args: ModelArguments, **kwargs):
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
variant = getattr(config, "backbone_variant", None)
if variant == "layerprune":
model_backbone = "QWEN2_VL_LayerPrune"
else:
model_backbone = get_backbone_name(hf_config=config)
print_master(f'Loading backbone [{model_backbone}] from {model_args.model_name}')
# Loading the base model
if model_backbone == PHI3V:
config._attn_implementation = "eager"
config.padding_side = "right"
config.use_cache = False
base_model = Phi3VForCausalLM.from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_backbone == LLAVA_NEXT:
config.use_cache = False
config.padding_side = "left"
base_model = LlavaNextForConditionalGeneration.from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_backbone in [QWEN2_VL, QWEN2_5_VL]:
config._attn_implementation = "flash_attention_2"
config.padding_side = "left"
config.use_cache = False
base_model = backbone2model[model_backbone].from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_backbone in ["QWEN2_VL_LayerPrune"]:
config._attn_implementation = "flash_attention_2"
config.padding_side = "left"
config.use_cache = False
base_model = backbone2model[model_backbone].from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_backbone in [QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION]:
config._attn_implementation = "flash_attention_2"
config.padding_side = "left"
config.use_cache = False
from .utils import parse_layer_type
lm_qwen_layer = 28
vis_qwen_layer = 32
lm_skip_layer = parse_layer_type(model_args.lm_skip_layer, lm_qwen_layer)
vis_skip_layer = parse_layer_type(model_args.vis_skip_layer, vis_qwen_layer)
base_model = backbone2model[model_backbone].from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
lm_skip_layer=lm_skip_layer,
vis_skip_layer=vis_skip_layer,
)
else:
config.use_cache = False
base_model = cls.TRANSFORMER_CLS.from_pretrained(
model_args.model_name, **kwargs, config=config,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
trust_remote_code=True)
if model_args.lora:
print_master(f'Loading lora adapter from {base_model}')
lora_config = LoraConfig(
r=model_args.lora_r,
lora_alpha=model_args.lora_alpha,
target_modules=model_args.lora_target_modules.split(','),
lora_dropout=model_args.lora_dropout,
init_lora_weights="gaussian",
use_dora=True,
inference_mode=False
)
lora_model = get_peft_model(base_model, lora_config)
model = cls(
encoder=lora_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
else:
model = cls(
encoder=base_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
# 在 build(...) 末尾(return model 前)添加
def _parse_list(val, tp=float):
if val is None: return None
if isinstance(val, (list, tuple)): return [tp(x) for x in val]
s = str(val).strip()
if s == "": return None
return [tp(v.strip()) for v in s.split(",") if v.strip() != ""]
layers = _parse_list(getattr(model_args, "supervise_layers", None), tp=int)
weights = _parse_list(getattr(model_args, "supervise_weights", None), tp=float)
if layers is None:
# fallback 到旧的二层设置
layers = [getattr(model_args, 'dual_layer_idx', 20), -1]
if -1 not in layers:
layers = list(layers) + [-1] # 强制包含最后一层
if weights is None or len(weights) != len(layers):
# 若未提供或长度不匹配,则做一个合理默认:最后一层占大头
K = len(layers)
base = [1.0/(K-1)]*(K-1) if K>1 else [1.0]
weights = base + [max(0.0, 1.0 - sum(base))]
# 归一化
s = sum(max(0.0, w) for w in weights)
weights = [max(0.0, w)/s for w in weights]
setattr(model, 'supervise_layers', layers)
setattr(model, 'supervise_weights', weights)
# 兼容旧参数
setattr(model, 'dual_layer_idx', layers[0] if len(layers)>1 else layers[0])
setattr(model, 'dual_alpha', weights[0] if len(weights)>1 else 1.0)
setattr(model, 'layer_indices', layers)
return model
@classmethod
def load(cls, model_args: ModelArguments, is_trainable=True, **kwargs):
# Loading the base model
model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
if not hasattr(model_args, "model_backbone") or not model_args.model_backbone:
model_backbone = get_backbone_name(hf_config=config, model_type=model_args.model_type)
setattr(model_args, 'model_backbone', model_backbone)
print_master(f'Loading backbone [{model_args.model_backbone}] from {model_name_or_path}')
if model_args.model_backbone in {LLAVA_NEXT, QWEN2_VL, QWEN2_5_VL, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V}:
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config._attn_implementation = "flash_attention_2"
config.vision_config._attn_implementation = "flash_attention_2"
base_model = backbone2model[model_args.model_backbone].from_pretrained(
model_args.model_name,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
config=config
)
elif model_args.model_backbone == PHI3V:
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config.use_cache = False
config.padding_side = "right"
base_model = Phi3VForCausalLM.from_pretrained(model_args.model_name, **kwargs, config=config,
torch_dtype=torch.bfloat16, trust_remote_code=True)
base_model.padding_side = "right"
elif model_args.model_backbone == INTERNVIDEO2:
print_master(f'Loading backbone [{model_args.model_backbone}] from {"src/model/vlm_backbone/internvideo2/"}')
config = AutoConfig.from_pretrained("src/model/vlm_backbone/internvideo2/",
trust_remote_code=True)
base_model = backbone2model[model_args.model_backbone].from_pretrained("src/model/vlm_backbone/internvideo2/", config=config,
trust_remote_code=True)
elif model_args.model_backbone == GME:
base_model = GmeQwen2VL(model_args.model_name, processor=kwargs['processor'])
setattr(base_model, 'config', config)
elif model_args.model_backbone == LamRA:
base_model = LamRAQwen2VL(model_args.model_name)
setattr(base_model, 'config', config)
elif model_args.model_backbone == LamRA_QWEN2_5:
base_model = LamRAQwen25VL(model_args.model_name)
setattr(base_model, 'config', config)
elif model_args.model_backbone == COLPALI:
base_model = ColPali.from_pretrained(model_args.model_name)
setattr(base_model, 'config', config)
else:
# Loading external base model from HF
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config.use_cache = False
base_model = cls.TRANSFORMER_CLS.from_pretrained(
model_name_or_path, **kwargs, config=config,
torch_dtype=torch.bfloat16,
trust_remote_code=True)
# Building the model on top of the base
if model_args.lora:
print_master(f'Loading LoRA from {model_name_or_path}')
lora_config = LoraConfig.from_pretrained(model_name_or_path)
lora_model = PeftModel.from_pretrained(base_model, model_name_or_path, config=lora_config, is_trainable=is_trainable)
lora_model.load_adapter(model_name_or_path, lora_model.active_adapter, is_trainable=is_trainable)
if not is_trainable:
lora_model = lora_model.merge_and_unload()
model = cls(
encoder=lora_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
else:
model = cls(
encoder=base_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
model.model_backbone = model_args.model_backbone
return model
def save(self, output_dir: str):
self.encoder.save_pretrained(output_dir)
def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs):
# GradCache:只给一侧 -> 返回多层表示
if qry is not None and tgt is None:
with _AOPSwitch(self.encoder, self._want_prune_for("qry")):
qry_reps = self._encode_multi(qry) # [B, K, D]
return {"qry_reps": qry_reps, "tgt_reps": None}
if tgt is not None and qry is None:
with _AOPSwitch(self.encoder, self._want_prune_for("tgt")):
tgt_reps = self._encode_multi(tgt) # [B, K, D]
return {"qry_reps": None, "tgt_reps": tgt_reps}
with _AOPSwitch(self.encoder, self._want_prune_for("qry")):
q_multi = self._encode_multi(qry) # [B, K, D]
with _AOPSwitch(self.encoder, self._want_prune_for("tgt")):
p_multi = self._encode_multi(tgt) # [B, K, D]
# DDP gather
if self.is_ddp:
q_multi_all = self._dist_gather_tensor(q_multi) # [B*, K, D]
p_multi_all = self._dist_gather_tensor(p_multi) # [B*, K, D]
else:
q_multi_all, p_multi_all = q_multi, p_multi
Bglob, K, D = q_multi_all.shape
assert p_multi_all.shape[:2] == (Bglob, K), f"Shape mismatch: q {q_multi_all.shape}, p {p_multi_all.shape}"
target = torch.arange(Bglob, device=q_multi_all.device, dtype=torch.long)
w = torch.tensor(self.supervise_weights, dtype=torch.float32, device=q_multi_all.device)
w = torch.clamp(w, min=0)
w = w / max(w.sum().item(), 1e-8)
loss = 0.0
for k in range(K):
# 逐层配对(k ↔ k)
logits_k = torch.matmul(q_multi_all[:, k, :], p_multi_all[:, k, :].transpose(0, 1)) / self.temperature
loss_k = self.cross_entropy(logits_k, target)
loss = loss + w[k] * loss_k
if self.is_ddp:
loss = loss * self.world_size
return loss
def _dist_gather_tensor(self, t: Tensor):
t = t.contiguous()
all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
dist.all_gather(all_tensors, t)
all_tensors[self.process_rank] = t
all_tensors = torch.cat(all_tensors, dim=0)
return all_tensors
def compute_similarity(self, q_reps, p_reps):
return torch.matmul(q_reps, p_reps.transpose(0, 1)) |