File size: 28,020 Bytes
0a937d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
from typing import Dict
import os
import torch
import torch.distributed as dist
from torch import nn, Tensor
import torch.nn.functional as F  # 如果文件顶部没引入的话
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig
from peft import LoraConfig, get_peft_model, PeftModel
from src.model.processor import QWEN2_5_VL_TOKENSELECTION
from src.arguments_multi_layer import ModelArguments, TrainingArguments
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, \
    backbone2model, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V

from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, INTERNVIDEO2, \
    QWEN2_VL_TOKENSELECTION, backbone2model, GME, VLM_IMAGE_TOKENS, LamRA, LamRA_QWEN2_5, COLPALI
from src.model.baseline_backbone.colpali import ColPali
from src.model.baseline_backbone.gme.gme_inference import GmeQwen2VL
from src.model.baseline_backbone.lamra.lamra_inference import LamRAQwen2VL
from src.model.baseline_backbone.lamra.lamra_qwen25_inference import LamRAQwen25VL
from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM
from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration

from transformers import modeling_utils
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
    modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", 'rowwise']
from contextlib import contextmanager

class _AOPSwitch:
    """
    Temporarily toggle encoder.aop_prune_config.enabled for one forward call.
    """
    def __init__(self, module: nn.Module, enable: bool):
        self.module = module
        self.enable = bool(enable)
        self._old = getattr(module, "aop_prune_config", None)

    def __enter__(self):
        # if no config set, nothing to do
        if self._old is None:
            return self
        if not self.enable:
            # disable only for this scope
            if isinstance(self._old, dict):
                cfg = dict(self._old)
                cfg["enabled"] = False
                setattr(self.module, "aop_prune_config", cfg)
            else:
                setattr(self.module, "aop_prune_config", None)
        # if enable=True, keep as is
        return self

    def __exit__(self, exc_type, exc, tb):
        # restore original
        setattr(self.module, "aop_prune_config", self._old)
        return False

class MMEBModel(nn.Module):
    TRANSFORMER_CLS = AutoModelForCausalLM

    def __init__(self,
                 encoder: PreTrainedModel,
                 pooling: str = 'last',
                 normalize: bool = False,
                 temperature: float = 0.02,
                 ):
        super().__init__()
        self.config = encoder.config
        self.encoder = encoder
        self.pooling = pooling
        self.normalize = normalize
        self.temperature = temperature
        self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')
        self.is_ddp = dist.is_initialized()
        if self.is_ddp:
            self.process_rank = dist.get_rank()
            self.world_size = dist.get_world_size()
        self.layer_indices = [20, -1]
        # 默认:一个或多个中间层 + 最后一层
        self.supervise_layers = [20, -1]   # -1 必须表示最后一层
        self.supervise_weights = [0.15, 0.85]  # 与 supervise_layers 对齐
    
    @property
    def device(self) -> torch.device:
        try:
            return next(self.parameters()).device
        except StopIteration:
            # 没有参数时兜底 CPU
            return torch.device("cpu")
        
    def _want_prune_for(self, side: str) -> bool:
        """
        side: "qry" or "tgt"
        """
        cfg = getattr(self.encoder, "aop_prune_config", None)
        if not isinstance(cfg, dict) or not cfg.get("enabled", False):
            return False
        apply_to = str(cfg.get("apply_to", "both")).lower()
        return (apply_to == "both") or (apply_to == side.lower())
        
    def _normalize_layers(self, hs_len: int, layers: list[int]) -> list[int]:
        Lmax = hs_len - 1
        out = []
        for idx in layers:
            if idx < 0:
                idx = hs_len + idx
            idx = max(1, min(idx, Lmax))
            out.append(idx)
        if (hs_len - 1) not in out:
            out.append(hs_len - 1)
        return out

    def _encode_multi(self, input):
        """
        通用多层编码:返回 [B, K, D],K=len(self.supervise_layers,经规范化且包含最后一层)。
        """
        mb = getattr(self, "model_backbone", None)

        def norm(x):
            return F.normalize(x, p=2, dim=-1) if self.normalize else x

        # 支持 hidden_states 的通用分支(Qwen2-VL 等)
        if mb not in [GME, LamRA, LamRA_QWEN2_5, INTERNVIDEO2, COLPALI]:
            out = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hs_list = out.hidden_states  # tuple/list, len = num_layers + 1(进入每层前的快照 + 最后norm)
            # 剪裁后 attention_mask(若未剪裁则为 None)
            post_mask = getattr(out, "attention_mask", None)    # [B, L_post] or None
            pre_mask  = input['attention_mask']                 # [B, L_pre]

            # 规范化 supervise_layers,并确保包含最后一层
            idxs = self._normalize_layers(len(hs_list), list(dict.fromkeys(self.supervise_layers)))

            # 读取训练时的剪裁层(1-based)。剪裁发生在进入 cut_layer 前,所以 idx >= cut_layer+1 才会看到 post 形状
            aop_cfg = getattr(self.encoder, "aop_prune_config", None)
            cut_layer = None
            if isinstance(aop_cfg, dict) and aop_cfg.get("enabled", False):
                try:
                    cut_layer = int(aop_cfg.get("layer_idx") or 0)
                    if cut_layer <= 0:
                        cut_layer = None
                except Exception:
                    cut_layer = None

            reps = []
            for idx in idxs:
                # 选择该层使用的 mask
                use_post = (post_mask is not None) and (cut_layer is not None) and (idx >= cut_layer + 1)
                mask_this = post_mask if use_post else pre_mask

                h = hs_list[idx]  # [B, L_idx, D]
                # 友好断言:若 mask 与 h 长度不一致,尝试回退到另一个 mask;否则兜底全1
                if mask_this is not None and h.size(1) != mask_this.size(1):
                    if pre_mask is not None and pre_mask.size(1) == h.size(1):
                        mask_this = pre_mask
                    elif post_mask is not None and post_mask.size(1) == h.size(1):
                        mask_this = post_mask
                    else:
                        mask_this = torch.ones(h.size(0), h.size(1), dtype=torch.long, device=h.device)

                r = self._pooling(h, mask_this)
                reps.append(F.normalize(r, p=2, dim=-1) if self.normalize else r)

            return torch.stack(reps, dim=1)  # [B, K, D]

    # def encode_input(self, input):
    def encode_input(self, input, layer_indices=None):
        if getattr(self, "model_backbone", None) == INTERNVIDEO2:
            if "input_ids" in input.keys():
                # text side
                text_output = self.encoder.get_text_encoder()(
                    input["input_ids"],
                    attention_mask=input["attention_mask"],
                    return_dict=True,
                    mode="text",
                )
                text_embeds = text_output.last_hidden_state
                pooled_text_embeds = text_embeds[:, 0]
                pooled_output = self.encoder.text_proj(pooled_text_embeds)
                pooled_output /= pooled_output.norm(dim=-1, keepdim=True)
                return pooled_output
            else:
                _, vfeat = self.encoder.encode_vision(input["pixel_values"], test=True)
                vfeat = self.encoder.vision_proj(vfeat)
                vfeat /= vfeat.norm(dim=-1, keepdim=True)
                return vfeat
        elif getattr(self, "model_backbone", None) in [GME, LamRA, LamRA_QWEN2_5]:
            # pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
            texts = [text.replace(VLM_IMAGE_TOKENS[QWEN2_VL] + '\n', '') for text in input["texts"]] # we are actually passing video queries so this should not happen
            images = []
            for imgs in input['images']:
                # if multi images are given, select the middle frame only
                if isinstance(imgs, list):
                    imgs = imgs[len(imgs) // 2]
                    assert not isinstance(imgs, list) # make sure we have extracted the middle frame and it is no longer a list
                    images.append(imgs)
                else:
                    images.append(imgs)
            pooled_output = self.encoder.get_fused_embeddings(texts=texts, images=images)
            return pooled_output
        elif getattr(self, "model_backbone", None) == COLPALI:
            pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
            return pooled_output
        elif getattr(self, "model_backbone", None) == LLAVA_NEXT:
            input['pixel_values'] = input['pixel_values'].squeeze(dim=1)
            input['image_sizes'] = input['image_sizes'].squeeze(dim=1)
            hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hidden_states = hidden_states.hidden_states[-1]
            pooled_output = self._pooling(hidden_states, input['attention_mask'])
            return pooled_output
        else:
            # 默认HF模型:支持 hidden_states(含 AOP 剪裁)
            out = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hs_list = out.hidden_states
            post_mask = getattr(out, "attention_mask", None)    # [B, L_post] or None
            pre_mask  = input['attention_mask']                 # [B, L_pre]

            # === AOP_MONITOR:观测每个样本的剪枝前/后长度与有效保留率 ===
            if os.getenv("AOP_MONITOR", "0") == "1":
                try:
                    B = pre_mask.size(0) if pre_mask is not None else hs_list[-1].size(0)
                    # 全局长度
                    pre_len = pre_mask.sum(dim=1).detach().cpu().tolist() if pre_mask is not None else [hs_list[-1].size(1)] * B
                    post_len = post_mask.sum(dim=1).detach().cpu().tolist() if post_mask is not None else pre_len

                    # 最近一次采样到的 keep_ratio(trainer 写入 cfg)仅用于参考打印
                    aop_cfg = getattr(self.encoder, "aop_prune_config", None)
                    kr_t = aop_cfg.get("_last_sampled_keep_ratio_text") if isinstance(aop_cfg, dict) else None
                    kr_v = aop_cfg.get("_last_sampled_keep_ratio_vision") if isinstance(aop_cfg, dict) else None

                    # 文本/视觉细分(可选)
                    pre_txt_cnt = pre_vis_cnt = post_txt_cnt = post_vis_cnt = None
                    input_ids = input.get("input_ids", None)
                    if input_ids is not None and pre_mask is not None:
                        cfg = self.encoder.config
                        valid_pre = pre_mask.bool()
                        vis_pre = (input_ids == getattr(cfg, "image_token_id", -999))
                        if hasattr(cfg, "video_token_id") and cfg.video_token_id is not None and cfg.video_token_id >= 0:
                            vis_pre = vis_pre | (input_ids == cfg.video_token_id)
                        special_pre = torch.zeros_like(input_ids, dtype=torch.bool)
                        for name in ["bos_token_id", "eos_token_id", "pad_token_id"]:
                            tid = getattr(cfg, name, None)
                            if tid is not None and tid >= 0:
                                special_pre |= (input_ids == tid)
                        pre_vis_cnt = (vis_pre & valid_pre).sum(dim=1).detach().cpu().tolist()
                        pre_txt_cnt = (valid_pre & (~vis_pre) & (~special_pre)).sum(dim=1).detach().cpu().tolist()

                    vis_post_mask = getattr(out, "image_token_bool_masks", None)
                    txt_post_mask = getattr(out, "text_token_bool_masks", None)
                    if vis_post_mask is not None:
                        post_vis_cnt = vis_post_mask.sum(dim=1).detach().cpu().tolist()
                    if txt_post_mask is not None:
                        post_txt_cnt = txt_post_mask.sum(dim=1).detach().cpu().tolist()

                    # 限制打印批次数,避免刷屏
                    if not hasattr(self, "_aop_mon_prints"):
                        self._aop_mon_prints = 0
                    if self._aop_mon_prints < 3:  # 仅前3个batch打印
                        print(f"[AOP][monitor] B={B} sampled: kr_text={kr_t}, kr_vision={kr_v}")
                        for b in range(min(B, 8)):  # 仅打印前8条样本
                            preL = int(pre_len[b]); postL = int(post_len[b]); keep = (postL / (preL + 1e-9))
                            msg = f"  b={b}: pre_len={preL}, post_len={postL}, keep={keep:.3f}"
                            if pre_txt_cnt is not None and post_txt_cnt is not None:
                                kt = (post_txt_cnt[b] / (pre_txt_cnt[b] + 1e-9)) if pre_txt_cnt[b] > 0 else float('nan')
                                msg += f", txt_keep={kt:.3f}"
                            if pre_vis_cnt is not None and post_vis_cnt is not None:
                                kv = (post_vis_cnt[b] / (pre_vis_cnt[b] + 1e-9)) if pre_vis_cnt[b] > 0 else float('nan')
                                msg += f", vis_keep={kv:.3f}"
                            print(msg)
                        self._aop_mon_prints += 1
                except Exception as e:
                    # 避免影响训练流程
                    print(f"[AOP][monitor] warn: monitor failed with error: {e}")

    def _pooling(self, last_hidden_state, attention_mask):
        if self.pooling == 'last' or self.pooling == 'eos':
            left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
            batch_size = last_hidden_state.shape[0]
            if left_padding:
                # Get the vectors at the last position
                reps = last_hidden_state[torch.arange(batch_size), -1, :]
            else:
                # Calculate last 1 position in the original tensor
                eos_indices = attention_mask.sum(dim=1) - 1
                # Get the vectors at the last 1 position of each attention mask
                reps = last_hidden_state[
                    torch.arange(batch_size, device=last_hidden_state.device), eos_indices]
        else:
            raise NotImplementedError
        if self.normalize:
            reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
        return reps

    @classmethod
    def build(cls, model_args: ModelArguments, **kwargs):
        config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
        variant = getattr(config, "backbone_variant", None)
        if variant == "layerprune":
            model_backbone = "QWEN2_VL_LayerPrune"
        else:
            model_backbone = get_backbone_name(hf_config=config)
        print_master(f'Loading backbone [{model_backbone}] from {model_args.model_name}')
        # Loading the base model
        if model_backbone == PHI3V:
            config._attn_implementation = "eager"
            config.padding_side = "right"
            config.use_cache = False
            base_model = Phi3VForCausalLM.from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone == LLAVA_NEXT:
            config.use_cache = False
            config.padding_side = "left"
            base_model = LlavaNextForConditionalGeneration.from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in [QWEN2_VL, QWEN2_5_VL]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False
            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in ["QWEN2_VL_LayerPrune"]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False
            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in [QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False

            from .utils import parse_layer_type
            lm_qwen_layer = 28
            vis_qwen_layer = 32
            lm_skip_layer = parse_layer_type(model_args.lm_skip_layer, lm_qwen_layer)
            vis_skip_layer = parse_layer_type(model_args.vis_skip_layer, vis_qwen_layer)

            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                lm_skip_layer=lm_skip_layer,
                vis_skip_layer=vis_skip_layer,
            )
        else:
            config.use_cache = False
            base_model = cls.TRANSFORMER_CLS.from_pretrained(
                model_args.model_name, **kwargs, config=config,
                attn_implementation="flash_attention_2",
                torch_dtype=torch.bfloat16,
                trust_remote_code=True)

        if model_args.lora:
            print_master(f'Loading lora adapter from {base_model}')
            lora_config = LoraConfig(
                r=model_args.lora_r,
                lora_alpha=model_args.lora_alpha,
                target_modules=model_args.lora_target_modules.split(','),
                lora_dropout=model_args.lora_dropout,
                init_lora_weights="gaussian",
                use_dora=True,
                inference_mode=False
            )
            lora_model = get_peft_model(base_model, lora_config)
            model = cls(
                encoder=lora_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        else:
            model = cls(
                encoder=base_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        # 在 build(...) 末尾(return model 前)添加
        def _parse_list(val, tp=float):
            if val is None: return None
            if isinstance(val, (list, tuple)): return [tp(x) for x in val]
            s = str(val).strip()
            if s == "": return None
            return [tp(v.strip()) for v in s.split(",") if v.strip() != ""]

        layers = _parse_list(getattr(model_args, "supervise_layers", None), tp=int)
        weights = _parse_list(getattr(model_args, "supervise_weights", None), tp=float)

        if layers is None:
            # fallback 到旧的二层设置
            layers = [getattr(model_args, 'dual_layer_idx', 20), -1]
        if -1 not in layers:
            layers = list(layers) + [-1]  # 强制包含最后一层

        if weights is None or len(weights) != len(layers):
            # 若未提供或长度不匹配,则做一个合理默认:最后一层占大头
            K = len(layers)
            base = [1.0/(K-1)]*(K-1) if K>1 else [1.0]
            weights = base + [max(0.0, 1.0 - sum(base))]

        # 归一化
        s = sum(max(0.0, w) for w in weights)
        weights = [max(0.0, w)/s for w in weights]

        setattr(model, 'supervise_layers', layers)
        setattr(model, 'supervise_weights', weights)
        # 兼容旧参数
        setattr(model, 'dual_layer_idx', layers[0] if len(layers)>1 else layers[0])
        setattr(model, 'dual_alpha', weights[0] if len(weights)>1 else 1.0)
        setattr(model, 'layer_indices', layers)
        return model


    @classmethod
    def load(cls, model_args: ModelArguments, is_trainable=True, **kwargs):
        # Loading the base model
        model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name
        config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
        if not hasattr(model_args, "model_backbone") or not model_args.model_backbone:
            model_backbone = get_backbone_name(hf_config=config, model_type=model_args.model_type)
            setattr(model_args, 'model_backbone', model_backbone)
        print_master(f'Loading backbone [{model_args.model_backbone}] from {model_name_or_path}')
        if model_args.model_backbone in {LLAVA_NEXT, QWEN2_VL, QWEN2_5_VL, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V}:
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config._attn_implementation = "flash_attention_2"
            config.vision_config._attn_implementation = "flash_attention_2"
            base_model = backbone2model[model_args.model_backbone].from_pretrained(
                model_args.model_name,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                config=config
            )
        elif model_args.model_backbone == PHI3V:
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            config.padding_side = "right"
            base_model = Phi3VForCausalLM.from_pretrained(model_args.model_name, **kwargs, config=config,
                                                          torch_dtype=torch.bfloat16, trust_remote_code=True)
            base_model.padding_side = "right"
        elif model_args.model_backbone == INTERNVIDEO2:
            print_master(f'Loading backbone [{model_args.model_backbone}] from {"src/model/vlm_backbone/internvideo2/"}')
            config = AutoConfig.from_pretrained("src/model/vlm_backbone/internvideo2/",
                                                trust_remote_code=True)
            base_model = backbone2model[model_args.model_backbone].from_pretrained("src/model/vlm_backbone/internvideo2/", config=config,
                                                                                   trust_remote_code=True)
        elif model_args.model_backbone == GME:
            base_model = GmeQwen2VL(model_args.model_name, processor=kwargs['processor'])
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == LamRA:
            base_model = LamRAQwen2VL(model_args.model_name)
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == LamRA_QWEN2_5:
            base_model = LamRAQwen25VL(model_args.model_name)
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == COLPALI:
            base_model = ColPali.from_pretrained(model_args.model_name)
            setattr(base_model, 'config', config)
        else:
            # Loading external base model from HF
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            base_model = cls.TRANSFORMER_CLS.from_pretrained(
                model_name_or_path, **kwargs, config=config,
                torch_dtype=torch.bfloat16,
                trust_remote_code=True)

        # Building the model on top of the base
        if model_args.lora:
            print_master(f'Loading LoRA from {model_name_or_path}')
            lora_config = LoraConfig.from_pretrained(model_name_or_path)
            lora_model = PeftModel.from_pretrained(base_model, model_name_or_path, config=lora_config, is_trainable=is_trainable)
            lora_model.load_adapter(model_name_or_path, lora_model.active_adapter, is_trainable=is_trainable)
            if not is_trainable:
                lora_model = lora_model.merge_and_unload()
            model = cls(
                encoder=lora_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        else:
            model = cls(
                encoder=base_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )

        model.model_backbone = model_args.model_backbone
        return model

    def save(self, output_dir: str):
        self.encoder.save_pretrained(output_dir)

    def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs):
        # GradCache:只给一侧 -> 返回多层表示
        if qry is not None and tgt is None:
            with _AOPSwitch(self.encoder, self._want_prune_for("qry")):
                qry_reps = self._encode_multi(qry)   # [B, K, D]
            return {"qry_reps": qry_reps, "tgt_reps": None}
        if tgt is not None and qry is None:
            with _AOPSwitch(self.encoder, self._want_prune_for("tgt")):
                tgt_reps = self._encode_multi(tgt)   # [B, K, D]
            return {"qry_reps": None, "tgt_reps": tgt_reps}

        with _AOPSwitch(self.encoder, self._want_prune_for("qry")):
            q_multi = self._encode_multi(qry)  # [B, K, D]
        with _AOPSwitch(self.encoder, self._want_prune_for("tgt")):
            p_multi = self._encode_multi(tgt)  # [B, K, D]

        # DDP gather
        if self.is_ddp:
            q_multi_all = self._dist_gather_tensor(q_multi)  # [B*, K, D]
            p_multi_all = self._dist_gather_tensor(p_multi)  # [B*, K, D]
        else:
            q_multi_all, p_multi_all = q_multi, p_multi

        Bglob, K, D = q_multi_all.shape
        assert p_multi_all.shape[:2] == (Bglob, K), f"Shape mismatch: q {q_multi_all.shape}, p {p_multi_all.shape}"
        target = torch.arange(Bglob, device=q_multi_all.device, dtype=torch.long)

        w = torch.tensor(self.supervise_weights, dtype=torch.float32, device=q_multi_all.device)
        w = torch.clamp(w, min=0)
        w = w / max(w.sum().item(), 1e-8)

        loss = 0.0
        for k in range(K):
            # 逐层配对(k ↔ k)
            logits_k = torch.matmul(q_multi_all[:, k, :], p_multi_all[:, k, :].transpose(0, 1)) / self.temperature
            loss_k = self.cross_entropy(logits_k, target)
            loss = loss + w[k] * loss_k

        if self.is_ddp:
            loss = loss * self.world_size

        return loss

    def _dist_gather_tensor(self, t: Tensor):
        t = t.contiguous()
        all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
        dist.all_gather(all_tensors, t)
        all_tensors[self.process_rank] = t
        all_tensors = torch.cat(all_tensors, dim=0)
        return all_tensors

    def compute_similarity(self, q_reps, p_reps):
        return torch.matmul(q_reps, p_reps.transpose(0, 1))