File size: 21,764 Bytes
0a937d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
from typing import Dict
import torch
import torch.distributed as dist
from torch import nn, Tensor
import torch.nn.functional as F # 如果文件顶部没引入的话
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig
from peft import LoraConfig, get_peft_model, PeftModel
from src.model.processor import QWEN2_5_VL_TOKENSELECTION
from src.arguments_multi_layer import ModelArguments, TrainingArguments
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, \
backbone2model, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, INTERNVIDEO2, \
QWEN2_VL_TOKENSELECTION, backbone2model, GME, VLM_IMAGE_TOKENS, LamRA, LamRA_QWEN2_5, COLPALI
from src.model.baseline_backbone.colpali import ColPali
from src.model.baseline_backbone.gme.gme_inference import GmeQwen2VL
from src.model.baseline_backbone.lamra.lamra_inference import LamRAQwen2VL
from src.model.baseline_backbone.lamra.lamra_qwen25_inference import LamRAQwen25VL
from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM
from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration
from transformers import modeling_utils
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", 'rowwise']
class MMEBModel(nn.Module):
TRANSFORMER_CLS = AutoModelForCausalLM
def __init__(self,
encoder: PreTrainedModel,
pooling: str = 'last',
normalize: bool = False,
temperature: float = 0.02,
):
super().__init__()
self.config = encoder.config
self.encoder = encoder
self.pooling = pooling
self.normalize = normalize
self.temperature = temperature
self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')
self.is_ddp = dist.is_initialized()
if self.is_ddp:
self.process_rank = dist.get_rank()
self.world_size = dist.get_world_size()
self.layer_indices = [20, -1]
# 默认:一个或多个中间层 + 最后一层
self.supervise_layers = [20, -1] # -1 必须表示最后一层
self.supervise_weights = [0.15, 0.85] # 与 supervise_layers 对齐
# 兼容旧参数
self.dual_layer_idx = 20
self.dual_alpha = 0.15
def _normalize_layers(self, hs_len: int, layers: list[int]) -> list[int]:
Lmax = hs_len - 1
out = []
for idx in layers:
if idx < 0:
idx = hs_len + idx
idx = max(1, min(idx, Lmax))
out.append(idx)
if (hs_len - 1) not in out:
out.append(hs_len - 1)
return out
def _encode_multi(self, input):
"""
通用多层编码:返回 [B, K, D],K=len(self.supervise_layers,经规范化且包含最后一层)。
"""
mb = getattr(self, "model_backbone", None)
def norm(x):
return F.normalize(x, p=2, dim=-1) if self.normalize else x
# 支持 hidden_states 的通用分支
if mb not in [GME, LamRA, LamRA_QWEN2_5, INTERNVIDEO2, COLPALI]:
out = self.encoder(**input, return_dict=True, output_hidden_states=True)
hs = out.hidden_states # list/tuple, len = L+1
idxs = self._normalize_layers(len(hs), list(dict.fromkeys(self.supervise_layers))) # 去重保序
reps = []
for idx in idxs:
r = self._pooling(hs[idx], input['attention_mask'])
reps.append(norm(r))
return torch.stack(reps, dim=1) # [B, K, D]
# LLAVA_NEXT:仍可拿 hidden_states
if mb == LLAVA_NEXT:
input = dict(input)
input['pixel_values'] = input['pixel_values'].squeeze(dim=1)
input['image_sizes'] = input['image_sizes'].squeeze(dim=1)
out = self.encoder(**input, return_dict=True, output_hidden_states=True)
hs = out.hidden_states
idxs = self._normalize_layers(len(hs), list(dict.fromkeys(self.supervise_layers)))
reps = []
for idx in idxs:
r = self._pooling(hs[idx], input['attention_mask'])
reps.append(norm(r))
return torch.stack(reps, dim=1)
# 其他不支持 hidden_states 的backbone:退化为重复最后一层
last = self.encode_input(input) # [B, D]
last = norm(last)
K = len(self.supervise_layers)
return torch.stack([last for _ in range(K)], dim=1) # [B, K, D]
# def encode_input(self, input):
def encode_input(self, input, layer_indices=None):
if getattr(self, "model_backbone", None) == INTERNVIDEO2:
if "input_ids" in input.keys():
# text side
text_output = self.encoder.get_text_encoder()(
input["input_ids"],
attention_mask=input["attention_mask"],
return_dict=True,
mode="text",
)
text_embeds = text_output.last_hidden_state
pooled_text_embeds = text_embeds[:, 0]
pooled_output = self.encoder.text_proj(pooled_text_embeds)
pooled_output /= pooled_output.norm(dim=-1, keepdim=True)
return pooled_output
else:
_, vfeat = self.encoder.encode_vision(input["pixel_values"], test=True)
vfeat = self.encoder.vision_proj(vfeat)
vfeat /= vfeat.norm(dim=-1, keepdim=True)
return vfeat
elif getattr(self, "model_backbone", None) in [GME, LamRA, LamRA_QWEN2_5]:
# pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
texts = [text.replace(VLM_IMAGE_TOKENS[QWEN2_VL] + '\n', '') for text in input["texts"]] # we are actually passing video queries so this should not happen
images = []
for imgs in input['images']:
# if multi images are given, select the middle frame only
if isinstance(imgs, list):
imgs = imgs[len(imgs) // 2]
assert not isinstance(imgs, list) # make sure we have extracted the middle frame and it is no longer a list
images.append(imgs)
else:
images.append(imgs)
pooled_output = self.encoder.get_fused_embeddings(texts=texts, images=images)
return pooled_output
elif getattr(self, "model_backbone", None) == COLPALI:
pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
return pooled_output
elif getattr(self, "model_backbone", None) == LLAVA_NEXT:
input['pixel_values'] = input['pixel_values'].squeeze(dim=1)
input['image_sizes'] = input['image_sizes'].squeeze(dim=1)
hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
hidden_states = hidden_states.hidden_states[-1]
pooled_output = self._pooling(hidden_states, input['attention_mask'])
return pooled_output
else:
# 默认HF模型:支持 hidden_states
out = self.encoder(**input, return_dict=True, output_hidden_states=True)
hs_list = out.hidden_states
if layer_indices is None or isinstance(layer_indices, int):
h = hs_list[-1] if layer_indices is None else hs_list[layer_indices]
reps = self._pooling(h, input['attention_mask'])
return reps
else:
reps_list = []
for idx in layer_indices:
h = hs_list[idx]
r = self._pooling(h, input['attention_mask'])
reps_list.append(r)
reps = torch.stack(reps_list, dim=1) # [B, L, D]
return reps
def _pooling(self, last_hidden_state, attention_mask):
if self.pooling == 'last' or self.pooling == 'eos':
left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
batch_size = last_hidden_state.shape[0]
if left_padding:
# Get the vectors at the last position
reps = last_hidden_state[torch.arange(batch_size), -1, :]
else:
# Calculate last 1 position in the original tensor
eos_indices = attention_mask.sum(dim=1) - 1
# Get the vectors at the last 1 position of each attention mask
reps = last_hidden_state[
torch.arange(batch_size, device=last_hidden_state.device), eos_indices]
else:
raise NotImplementedError
if self.normalize:
reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
return reps
@classmethod
def build(cls, model_args: ModelArguments, **kwargs):
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
variant = getattr(config, "backbone_variant", None)
if variant == "layerprune":
model_backbone = "QWEN2_VL_LayerPrune"
else:
model_backbone = get_backbone_name(hf_config=config)
print_master(f'Loading backbone [{model_backbone}] from {model_args.model_name}')
# Loading the base model
if model_backbone == PHI3V:
config._attn_implementation = "eager"
config.padding_side = "right"
config.use_cache = False
base_model = Phi3VForCausalLM.from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_backbone == LLAVA_NEXT:
config.use_cache = False
config.padding_side = "left"
base_model = LlavaNextForConditionalGeneration.from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_backbone in [QWEN2_VL, QWEN2_5_VL]:
config._attn_implementation = "flash_attention_2"
config.padding_side = "left"
config.use_cache = False
base_model = backbone2model[model_backbone].from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_backbone in ["QWEN2_VL_LayerPrune"]:
config._attn_implementation = "flash_attention_2"
config.padding_side = "left"
config.use_cache = False
base_model = backbone2model[model_backbone].from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
)
elif model_backbone in [QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION]:
config._attn_implementation = "flash_attention_2"
config.padding_side = "left"
config.use_cache = False
from .utils import parse_layer_type
lm_qwen_layer = 28
vis_qwen_layer = 32
lm_skip_layer = parse_layer_type(model_args.lm_skip_layer, lm_qwen_layer)
vis_skip_layer = parse_layer_type(model_args.vis_skip_layer, vis_qwen_layer)
base_model = backbone2model[model_backbone].from_pretrained(
model_args.model_name,
config=config,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
lm_skip_layer=lm_skip_layer,
vis_skip_layer=vis_skip_layer,
)
else:
config.use_cache = False
base_model = cls.TRANSFORMER_CLS.from_pretrained(
model_args.model_name, **kwargs, config=config,
attn_implementation="flash_attention_2",
torch_dtype=torch.bfloat16,
trust_remote_code=True)
if model_args.lora:
print_master(f'Loading lora adapter from {base_model}')
lora_config = LoraConfig(
r=model_args.lora_r,
lora_alpha=model_args.lora_alpha,
target_modules=model_args.lora_target_modules.split(','),
lora_dropout=model_args.lora_dropout,
init_lora_weights="gaussian",
use_dora=True,
inference_mode=False
)
lora_model = get_peft_model(base_model, lora_config)
model = cls(
encoder=lora_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
else:
model = cls(
encoder=base_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
# 在 build(...) 末尾(return model 前)添加
def _parse_list(val, tp=float):
if val is None: return None
if isinstance(val, (list, tuple)): return [tp(x) for x in val]
s = str(val).strip()
if s == "": return None
return [tp(v.strip()) for v in s.split(",") if v.strip() != ""]
layers = _parse_list(getattr(model_args, "supervise_layers", None), tp=int)
weights = _parse_list(getattr(model_args, "supervise_weights", None), tp=float)
if layers is None:
# fallback 到旧的二层设置
layers = [getattr(model_args, 'dual_layer_idx', 20), -1]
if -1 not in layers:
layers = list(layers) + [-1] # 强制包含最后一层
if weights is None or len(weights) != len(layers):
# 若未提供或长度不匹配,则做一个合理默认:最后一层占大头
K = len(layers)
base = [1.0/(K-1)]*(K-1) if K>1 else [1.0]
weights = base + [max(0.0, 1.0 - sum(base))]
# 归一化
s = sum(max(0.0, w) for w in weights)
weights = [max(0.0, w)/s for w in weights]
setattr(model, 'supervise_layers', layers)
setattr(model, 'supervise_weights', weights)
# 兼容旧参数
setattr(model, 'dual_layer_idx', layers[0] if len(layers)>1 else layers[0])
setattr(model, 'dual_alpha', weights[0] if len(weights)>1 else 1.0)
setattr(model, 'layer_indices', layers)
return model
@classmethod
def load(cls, model_args: ModelArguments, is_trainable=True, **kwargs):
# Loading the base model
model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name
config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
if not hasattr(model_args, "model_backbone") or not model_args.model_backbone:
model_backbone = get_backbone_name(hf_config=config, model_type=model_args.model_type)
setattr(model_args, 'model_backbone', model_backbone)
print_master(f'Loading backbone [{model_args.model_backbone}] from {model_name_or_path}')
if model_args.model_backbone in {LLAVA_NEXT, QWEN2_VL, QWEN2_5_VL, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V}:
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config._attn_implementation = "flash_attention_2"
config.vision_config._attn_implementation = "flash_attention_2"
base_model = backbone2model[model_args.model_backbone].from_pretrained(
model_args.model_name,
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True,
config=config
)
elif model_args.model_backbone == PHI3V:
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config.use_cache = False
config.padding_side = "right"
base_model = Phi3VForCausalLM.from_pretrained(model_args.model_name, **kwargs, config=config,
torch_dtype=torch.bfloat16, trust_remote_code=True)
base_model.padding_side = "right"
elif model_args.model_backbone == INTERNVIDEO2:
print_master(f'Loading backbone [{model_args.model_backbone}] from {"src/model/vlm_backbone/internvideo2/"}')
config = AutoConfig.from_pretrained("src/model/vlm_backbone/internvideo2/",
trust_remote_code=True)
base_model = backbone2model[model_args.model_backbone].from_pretrained("src/model/vlm_backbone/internvideo2/", config=config,
trust_remote_code=True)
elif model_args.model_backbone == GME:
base_model = GmeQwen2VL(model_args.model_name, processor=kwargs['processor'])
setattr(base_model, 'config', config)
elif model_args.model_backbone == LamRA:
base_model = LamRAQwen2VL(model_args.model_name)
setattr(base_model, 'config', config)
elif model_args.model_backbone == LamRA_QWEN2_5:
base_model = LamRAQwen25VL(model_args.model_name)
setattr(base_model, 'config', config)
elif model_args.model_backbone == COLPALI:
base_model = ColPali.from_pretrained(model_args.model_name)
setattr(base_model, 'config', config)
else:
# Loading external base model from HF
config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
config.use_cache = False
base_model = cls.TRANSFORMER_CLS.from_pretrained(
model_name_or_path, **kwargs, config=config,
torch_dtype=torch.bfloat16,
trust_remote_code=True)
# Building the model on top of the base
if model_args.lora:
print_master(f'Loading LoRA from {model_name_or_path}')
lora_config = LoraConfig.from_pretrained(model_name_or_path)
lora_model = PeftModel.from_pretrained(base_model, model_name_or_path, config=lora_config, is_trainable=is_trainable)
lora_model.load_adapter(model_name_or_path, lora_model.active_adapter, is_trainable=is_trainable)
if not is_trainable:
lora_model = lora_model.merge_and_unload()
model = cls(
encoder=lora_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
else:
model = cls(
encoder=base_model,
pooling=model_args.pooling,
normalize=model_args.normalize,
temperature=model_args.temperature
)
model.model_backbone = model_args.model_backbone
return model
def save(self, output_dir: str):
self.encoder.save_pretrained(output_dir)
def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs):
# GradCache:只给一侧 -> 返回多层表示
if qry is not None and tgt is None:
qry_reps = self._encode_multi(qry) # [B, K, D]
return {"qry_reps": qry_reps, "tgt_reps": None}
if tgt is not None and qry is None:
tgt_reps = self._encode_multi(tgt) # [B, K, D]
return {"qry_reps": None, "tgt_reps": tgt_reps}
# 非 GradCache:两侧同时给,直接算逐层配对的加权 CE
q_multi = self._encode_multi(qry) # [B, K, D]
p_multi = self._encode_multi(tgt) # [B, K, D]
# DDP gather
if self.is_ddp:
q_multi_all = self._dist_gather_tensor(q_multi) # [B*, K, D]
p_multi_all = self._dist_gather_tensor(p_multi) # [B*, K, D]
else:
q_multi_all, p_multi_all = q_multi, p_multi
Bglob, K, D = q_multi_all.shape
assert p_multi_all.shape[:2] == (Bglob, K), f"Shape mismatch: q {q_multi_all.shape}, p {p_multi_all.shape}"
target = torch.arange(Bglob, device=q_multi_all.device, dtype=torch.long)
w = torch.tensor(self.supervise_weights, dtype=torch.float32, device=q_multi_all.device)
w = torch.clamp(w, min=0)
w = w / max(w.sum().item(), 1e-8)
loss = 0.0
for k in range(K):
# 逐层配对(k ↔ k)
logits_k = torch.matmul(q_multi_all[:, k, :], p_multi_all[:, k, :].transpose(0, 1)) / self.temperature
loss_k = self.cross_entropy(logits_k, target)
loss = loss + w[k] * loss_k
if self.is_ddp:
loss = loss * self.world_size
return loss
def _dist_gather_tensor(self, t: Tensor):
t = t.contiguous()
all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
dist.all_gather(all_tensors, t)
all_tensors[self.process_rank] = t
all_tensors = torch.cat(all_tensors, dim=0)
return all_tensors
def compute_similarity(self, q_reps, p_reps):
return torch.matmul(q_reps, p_reps.transpose(0, 1)) |