File size: 22,544 Bytes
0a937d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
from typing import Dict
import torch
import torch.distributed as dist
from torch import nn, Tensor
import torch.nn.functional as F  # 如果文件顶部没引入的话
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig
from peft import LoraConfig, get_peft_model, PeftModel
from src.model.processor import QWEN2_5_VL_TOKENSELECTION
from src.arguments import ModelArguments, TrainingArguments
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, \
    backbone2model, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V

from src.arguments import ModelArguments
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, INTERNVIDEO2, \
    QWEN2_VL_TOKENSELECTION, backbone2model, GME, VLM_IMAGE_TOKENS, LamRA, LamRA_QWEN2_5, COLPALI
from src.model.baseline_backbone.colpali import ColPali
from src.model.baseline_backbone.gme.gme_inference import GmeQwen2VL
from src.model.baseline_backbone.lamra.lamra_inference import LamRAQwen2VL
from src.model.baseline_backbone.lamra.lamra_qwen25_inference import LamRAQwen25VL
from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM
from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration

from transformers import modeling_utils
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
    modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", 'rowwise']


class MMEBModel(nn.Module):
    TRANSFORMER_CLS = AutoModelForCausalLM

    def __init__(self,
                 encoder: PreTrainedModel,
                 pooling: str = 'last',
                 normalize: bool = False,
                 temperature: float = 0.02,
                 ):
        super().__init__()
        self.config = encoder.config
        self.encoder = encoder
        self.pooling = pooling
        self.normalize = normalize
        self.temperature = temperature
        self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')
        self.is_ddp = dist.is_initialized()
        if self.is_ddp:
            self.process_rank = dist.get_rank()
            self.world_size = dist.get_world_size()
        self.layer_indices = [20, -1]
        self.dual_layer_idx = 20   # query 的第20层
        self.dual_alpha = 0.15     # 两个 CE 的加权系数
    
    def _encode_query_dual(self, input):
        """
        返回 [B, 2, D]: 第20层与最后一层的池化向量。
        对不支持 hidden_states 的 backbone,回退为两份相同的最后一层。
        """
        mb = getattr(self, "model_backbone", None)

        def norm(x):
            return F.normalize(x, p=2, dim=-1) if self.normalize else x

        # 支持 hidden_states 的分支(LLAVA_NEXT + 默认HF)
        if mb not in [GME, LamRA, LamRA_QWEN2_5, INTERNVIDEO2, COLPALI]:
            out = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hs = out.hidden_states  # [emb, layer1, ..., layerL]
            idx20 = self.dual_layer_idx
            # 安全检查与边界保护
            if idx20 < 0:
                idx20 = len(hs) + idx20  # 允许负索引
            idx20 = max(1, min(idx20, len(hs) - 1))  # 1..L

            rep20 = self._pooling(hs[idx20], input['attention_mask'])
            replast = self._pooling(hs[-1],    input['attention_mask'])
            rep20, replast = norm(rep20), norm(replast)
            reps = torch.stack([rep20, replast], dim=1)  # [B, 2, D]
            return reps

        # LLAVA_NEXT 特殊:保持和原来一致地取 hidden_states
        if mb == LLAVA_NEXT:
            input = dict(input)  # 避免原地修改
            input['pixel_values'] = input['pixel_values'].squeeze(dim=1)
            input['image_sizes'] = input['image_sizes'].squeeze(dim=1)
            out = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hs = out.hidden_states
            idx20 = self.dual_layer_idx
            if idx20 < 0:
                idx20 = len(hs) + idx20
            idx20 = max(1, min(idx20, len(hs) - 1))
            rep20 = self._pooling(hs[idx20], input['attention_mask'])
            replast = self._pooling(hs[-1],    input['attention_mask'])
            rep20, replast = norm(rep20), norm(replast)
            reps = torch.stack([rep20, replast], dim=1)
            return reps

        # 其他不支持中间层的backbone:回退(两份最后一层)
        last = self.encode_input(input)  # [B, D],已有归一化
        reps = torch.stack([last, last], dim=1)
        return reps

    # def encode_input(self, input):
    def encode_input(self, input, layer_indices=None):
        if getattr(self, "model_backbone", None) == INTERNVIDEO2:
            if "input_ids" in input.keys():
                # text side
                text_output = self.encoder.get_text_encoder()(
                    input["input_ids"],
                    attention_mask=input["attention_mask"],
                    return_dict=True,
                    mode="text",
                )
                text_embeds = text_output.last_hidden_state
                pooled_text_embeds = text_embeds[:, 0]
                pooled_output = self.encoder.text_proj(pooled_text_embeds)
                pooled_output /= pooled_output.norm(dim=-1, keepdim=True)
                return pooled_output
            else:
                _, vfeat = self.encoder.encode_vision(input["pixel_values"], test=True)
                vfeat = self.encoder.vision_proj(vfeat)
                vfeat /= vfeat.norm(dim=-1, keepdim=True)
                return vfeat
        elif getattr(self, "model_backbone", None) in [GME, LamRA, LamRA_QWEN2_5]:
            # pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
            texts = [text.replace(VLM_IMAGE_TOKENS[QWEN2_VL] + '\n', '') for text in input["texts"]] # we are actually passing video queries so this should not happen
            images = []
            for imgs in input['images']:
                # if multi images are given, select the middle frame only
                if isinstance(imgs, list):
                    imgs = imgs[len(imgs) // 2]
                    assert not isinstance(imgs, list) # make sure we have extracted the middle frame and it is no longer a list
                    images.append(imgs)
                else:
                    images.append(imgs)
            pooled_output = self.encoder.get_fused_embeddings(texts=texts, images=images)
            return pooled_output
        elif getattr(self, "model_backbone", None) == COLPALI:
            pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
            return pooled_output
        elif getattr(self, "model_backbone", None) == LLAVA_NEXT:
            input['pixel_values'] = input['pixel_values'].squeeze(dim=1)
            input['image_sizes'] = input['image_sizes'].squeeze(dim=1)
            hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hidden_states = hidden_states.hidden_states[-1]
            pooled_output = self._pooling(hidden_states, input['attention_mask'])
            return pooled_output
        else:
            # hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
            # # hidden_states = self.encoder(**input, compression_rate=compression_rate, return_dict=True, output_hidden_states=True)
            # hidden_states = hidden_states.hidden_states[-1]
            # pooled_output = self._pooling(hidden_states, input['attention_mask'])
            # return pooled_output
            # 默认HF模型:支持 hidden_states
            out = self.encoder(**input, return_dict=True, output_hidden_states=True)
            hs_list = out.hidden_states
            if layer_indices is None or isinstance(layer_indices, int):
                h = hs_list[-1] if layer_indices is None else hs_list[layer_indices]
                reps = self._pooling(h, input['attention_mask'])
                return reps
            else:
                reps_list = []
                for idx in layer_indices:
                    h = hs_list[idx]
                    r = self._pooling(h, input['attention_mask'])
                    reps_list.append(r)
                reps = torch.stack(reps_list, dim=1)  # [B, L, D]
                return reps

    def _pooling(self, last_hidden_state, attention_mask):
        if self.pooling == 'last' or self.pooling == 'eos':
            left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
            batch_size = last_hidden_state.shape[0]
            if left_padding:
                # Get the vectors at the last position
                reps = last_hidden_state[torch.arange(batch_size), -1, :]
            else:
                # Calculate last 1 position in the original tensor
                eos_indices = attention_mask.sum(dim=1) - 1
                # Get the vectors at the last 1 position of each attention mask
                reps = last_hidden_state[
                    torch.arange(batch_size, device=last_hidden_state.device), eos_indices]
        else:
            raise NotImplementedError
        if self.normalize:
            reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
        return reps

    @classmethod
    def build(cls, model_args: ModelArguments, **kwargs):
        config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
        variant = getattr(config, "backbone_variant", None)
        if variant == "layerprune":
            model_backbone = "QWEN2_VL_LayerPrune"
        else:
            model_backbone = get_backbone_name(hf_config=config)
        print_master(f'Loading backbone [{model_backbone}] from {model_args.model_name}')
        # Loading the base model
        if model_backbone == PHI3V:
            config._attn_implementation = "eager"
            config.padding_side = "right"
            config.use_cache = False
            base_model = Phi3VForCausalLM.from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone == LLAVA_NEXT:
            config.use_cache = False
            config.padding_side = "left"
            base_model = LlavaNextForConditionalGeneration.from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in [QWEN2_VL, QWEN2_5_VL]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False
            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in ["QWEN2_VL_LayerPrune"]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False
            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in [QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False

            from .utils import parse_layer_type
            lm_qwen_layer = 28
            vis_qwen_layer = 32
            lm_skip_layer = parse_layer_type(model_args.lm_skip_layer, lm_qwen_layer)
            vis_skip_layer = parse_layer_type(model_args.vis_skip_layer, vis_qwen_layer)

            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                lm_skip_layer=lm_skip_layer,
                vis_skip_layer=vis_skip_layer,
            )
        else:
            config.use_cache = False
            base_model = cls.TRANSFORMER_CLS.from_pretrained(
                model_args.model_name, **kwargs, config=config,
                attn_implementation="flash_attention_2",
                torch_dtype=torch.bfloat16,
                trust_remote_code=True)

        if model_args.lora:
            print_master(f'Loading lora adapter from {base_model}')
            lora_config = LoraConfig(
                r=model_args.lora_r,
                lora_alpha=model_args.lora_alpha,
                target_modules=model_args.lora_target_modules.split(','),
                lora_dropout=model_args.lora_dropout,
                init_lora_weights="gaussian",
                use_dora=True,
                inference_mode=False
            )
            lora_model = get_peft_model(base_model, lora_config)
            model = cls(
                encoder=lora_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        else:
            model = cls(
                encoder=base_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        # 注入属性(供 _encode_query_dual 使用)
        setattr(model, 'model_backbone', model_backbone)
        setattr(model, 'dual_layer_idx', getattr(model_args, 'dual_layer_idx', 20))
        setattr(model, 'dual_alpha', getattr(model_args, 'dual_alpha', 0.15))
        setattr(model, 'layer_indices', [model.dual_layer_idx, -1])
        return model


    @classmethod
    def load(cls, model_args: ModelArguments, is_trainable=True, **kwargs):
        # Loading the base model
        model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name
        config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
        if not hasattr(model_args, "model_backbone") or not model_args.model_backbone:
            model_backbone = get_backbone_name(hf_config=config, model_type=model_args.model_type)
            setattr(model_args, 'model_backbone', model_backbone)
        print_master(f'Loading backbone [{model_args.model_backbone}] from {model_name_or_path}')
        if model_args.model_backbone in {LLAVA_NEXT, QWEN2_VL, QWEN2_5_VL, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V}:
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config._attn_implementation = "flash_attention_2"
            config.vision_config._attn_implementation = "flash_attention_2"
            base_model = backbone2model[model_args.model_backbone].from_pretrained(
                model_args.model_name,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                config=config
            )
        elif model_args.model_backbone == PHI3V:
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            config.padding_side = "right"
            base_model = Phi3VForCausalLM.from_pretrained(model_args.model_name, **kwargs, config=config,
                                                          torch_dtype=torch.bfloat16, trust_remote_code=True)
            base_model.padding_side = "right"
        elif model_args.model_backbone == INTERNVIDEO2:
            print_master(f'Loading backbone [{model_args.model_backbone}] from {"src/model/vlm_backbone/internvideo2/"}')
            config = AutoConfig.from_pretrained("src/model/vlm_backbone/internvideo2/",
                                                trust_remote_code=True)
            base_model = backbone2model[model_args.model_backbone].from_pretrained("src/model/vlm_backbone/internvideo2/", config=config,
                                                                                   trust_remote_code=True)
        elif model_args.model_backbone == GME:
            base_model = GmeQwen2VL(model_args.model_name, processor=kwargs['processor'])
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == LamRA:
            base_model = LamRAQwen2VL(model_args.model_name)
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == LamRA_QWEN2_5:
            base_model = LamRAQwen25VL(model_args.model_name)
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == COLPALI:
            base_model = ColPali.from_pretrained(model_args.model_name)
            setattr(base_model, 'config', config)
        else:
            # Loading external base model from HF
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            base_model = cls.TRANSFORMER_CLS.from_pretrained(
                model_name_or_path, **kwargs, config=config,
                torch_dtype=torch.bfloat16,
                trust_remote_code=True)

        # Building the model on top of the base
        if model_args.lora:
            print_master(f'Loading LoRA from {model_name_or_path}')
            lora_config = LoraConfig.from_pretrained(model_name_or_path)
            lora_model = PeftModel.from_pretrained(base_model, model_name_or_path, config=lora_config, is_trainable=is_trainable)
            lora_model.load_adapter(model_name_or_path, lora_model.active_adapter, is_trainable=is_trainable)
            if not is_trainable:
                lora_model = lora_model.merge_and_unload()
            model = cls(
                encoder=lora_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        else:
            model = cls(
                encoder=base_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )

        model.model_backbone = model_args.model_backbone
        return model

    def save(self, output_dir: str):
        self.encoder.save_pretrained(output_dir)

    # def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs):
    #     qry_reps, tgt_reps = None, None

    #     if qry is not None:
    #         qry_reps = self.encode_input(qry, layer_indices = self.layer_indices)   # 仅qry侧用裁层
    #     if tgt is not None:
    #         tgt_reps = self.encode_input(tgt)   # cand侧保持全层(或按你设置)
    #     # print('qry_reps:', qry_reps)
    #     # print('tgt:', tgt)
    #     # print('self.layer_indices:', self.layer_indices)
    #     # exit()

    #     # 只编码一侧时,按你之前的返回约定原样返回
    #     if qry_reps is None or tgt_reps is None:
    #         return {"qry_reps": qry_reps, "tgt_reps": tgt_reps}

    #     if self.is_ddp:
    #         all_qry_reps = self._dist_gather_tensor(qry_reps)
    #         all_tgt_reps = self._dist_gather_tensor(tgt_reps)
    #     else:
    #         all_qry_reps = qry_reps
    #         all_tgt_reps = tgt_reps

    #     scores = self.compute_similarity(all_qry_reps, all_tgt_reps)
    #     scores = scores.view(all_qry_reps.size(0), -1)
    #     target = torch.arange(scores.size(0), device=scores.device, dtype=torch.long)
    #     target = target * (all_qry_reps.size(0) // all_tgt_reps.size(0))
    #     loss = self.cross_entropy(scores / self.temperature, target)
    #     if self.is_ddp:
    #         loss = loss * self.world_size

    #     return loss
    def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs):
        # GradCache:只给一侧,返回表示
        if qry is not None and tgt is None:
            qry_reps = self._encode_query_dual(qry)  # [B, 2, D]
            return {"qry_reps": qry_reps, "tgt_reps": None}
        if tgt is not None and qry is None:
            tgt_reps = self.encode_input(tgt)       # [B, D]
            return {"qry_reps": None, "tgt_reps": tgt_reps}

        # 非 GradCache:两侧同时给,直接算双 CE
        qry_dual = self._encode_query_dual(qry)   # [B, 2, D]
        tgt_last = self.encode_input(tgt)         # [B, D]

        # DDP 全局收集
        if self.is_ddp:
            q20_all  = self._dist_gather_tensor(qry_dual[:, 0, :])
            qlast_all= self._dist_gather_tensor(qry_dual[:, 1, :])
            p_all    = self._dist_gather_tensor(tgt_last)
        else:
            q20_all, qlast_all, p_all = qry_dual[:, 0, :], qry_dual[:, 1, :], tgt_last

        # 计算两个 logits 并分别做 CE
        scores20   = torch.matmul(q20_all,   p_all.transpose(0, 1))
        scoreslast = torch.matmul(qlast_all, p_all.transpose(0, 1))
        scores20   = scores20   / self.temperature
        scoreslast = scoreslast / self.temperature

        B = scores20.size(0)
        target = torch.arange(B, device=scores20.device, dtype=torch.long)
        # 如遇 Nq != Nt,可参考原逻辑修正(通常相等)
        # target = target * (q20_all.size(0) // p_all.size(0))

        loss20   = self.cross_entropy(scores20,   target)
        print('loss20:', loss20)
        losslast = self.cross_entropy(scoreslast, target)
        print('losslast:', losslast)
        alpha = getattr(self, "dual_alpha", 0.15)
        loss = alpha * loss20 + (1.0 - alpha) * losslast

        if self.is_ddp:
            loss = loss * self.world_size  # 与 Trainer 的 /world_size 抵消

        return loss

    def _dist_gather_tensor(self, t: Tensor):
        t = t.contiguous()
        all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
        dist.all_gather(all_tensors, t)
        all_tensors[self.process_rank] = t
        all_tensors = torch.cat(all_tensors, dim=0)
        return all_tensors

    def compute_similarity(self, q_reps, p_reps):
        return torch.matmul(q_reps, p_reps.transpose(0, 1))