File size: 21,582 Bytes
0a937d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
from typing import Dict
import torch
import torch.distributed as dist
from torch import nn, Tensor
from transformers import PreTrainedModel, AutoModelForCausalLM, AutoConfig
from peft import LoraConfig, get_peft_model, PeftModel
from src.model.processor import QWEN2_5_VL_TOKENSELECTION
from src.arguments import ModelArguments, TrainingArguments
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, \
    backbone2model, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V

from src.arguments import ModelArguments
from src.model.processor import LLAVA_NEXT, QWEN2_VL, PHI3V, get_backbone_name, print_master, QWEN2_5_VL, INTERNVIDEO2, \
    QWEN2_VL_TOKENSELECTION, backbone2model, GME, VLM_IMAGE_TOKENS, LamRA, LamRA_QWEN2_5, COLPALI
from src.model.baseline_backbone.colpali import ColPali
from src.model.baseline_backbone.gme.gme_inference import GmeQwen2VL
from src.model.baseline_backbone.lamra.lamra_inference import LamRAQwen2VL
from src.model.baseline_backbone.lamra.lamra_qwen25_inference import LamRAQwen25VL
from src.model.baseline_backbone.phi3_v.modeling_phi3_v import Phi3VForCausalLM
from src.model.baseline_backbone.llava_next import LlavaNextForConditionalGeneration

from transformers import modeling_utils
if not hasattr(modeling_utils, "ALL_PARALLEL_STYLES") or modeling_utils.ALL_PARALLEL_STYLES is None:
    modeling_utils.ALL_PARALLEL_STYLES = ["tp", "none", "colwise", 'rowwise']

from contextlib import contextmanager

class MMEBModel(nn.Module):
    TRANSFORMER_CLS = AutoModelForCausalLM

    def __init__(self,
                 encoder: PreTrainedModel,
                 pooling: str = 'last',
                 normalize: bool = False,
                 temperature: float = 0.02,
                 ):
        super().__init__()
        self.config = encoder.config
        self.encoder = encoder
        self.pooling = pooling
        self.normalize = normalize
        self.temperature = temperature
        self.cross_entropy = nn.CrossEntropyLoss(reduction='mean')
        self.is_ddp = dist.is_initialized()
        if self.is_ddp:
            self.process_rank = dist.get_rank()
            self.world_size = dist.get_world_size()
        self.qry_lm_layers = 16  # e.g., 16 代表只跑前16层
        self.tgt_lm_layers = 16  # None 或 0 表示不裁层(全层)
        # NEW: 最近一次底模 forward 的 image token 布尔掩码([B, L])
        self._last_image_token_bool_masks = None

    def set_inference_layers(self, qry_layers: int | None = None, tgt_layers: int | None = None):
        """设置推理阶段每侧使用的LM层数:qry用qry_layers层、cand用tgt_layers层。None代表不裁层。"""
        self.qry_lm_layers = qry_layers
        self.tgt_lm_layers = tgt_layers

    def _locate_lm_layers(self, enc: nn.Module):
        """
        返回(decoder容器, 'layers'),用于访问 LM 的 ModuleList。
        兼容常见Qwen/LLaMA路径:model.language_model.layers / model.model.layers / model.layers / transformer.layers
        """
        candidates = [
            ("model", "language_model", "layers"),
            ("model", "model", "layers"),
            ("model", "layers"),
            ("language_model", "layers"),
            ("transformer", "layers"),
        ]
        for path in candidates:
            obj = enc
            ok = True
            for p in path:
                if hasattr(obj, p):
                    obj = getattr(obj, p)
                else:
                    ok = False
                    break
            if ok and isinstance(obj, nn.ModuleList):
                # 返回父对象与属性名 'layers'
                parent = enc
                for p in path[:-1]:
                    parent = getattr(parent, p)
                return parent, path[-1]
        return None, None

    @contextmanager
    def _limit_lm_layers(self, enc: nn.Module, keep_layers: int | None):
        """
        临时把 enc 的 LM layers 截断为前 keep_layers 层;退出时恢复。
        keep_layers 为 None/0/负数 -> 不裁层。
        """
        if not keep_layers or keep_layers <= 0:
            yield
            return
        root, attr = self._locate_lm_layers(enc)
        if root is None:
            # 找不到LM层,直接忽略
            yield
            return
        full: nn.ModuleList = getattr(root, attr)
        try:
            # 注意:这里复用相同的子模块对象,不复制权重;仅替换列表视图,显存不额外膨胀
            setattr(root, attr, nn.ModuleList(list(full[:keep_layers])))
            yield
        finally:
            setattr(root, attr, full)
    
    # def encode_input(self, input):
    # def encode_input(self, input, compression_rate=None):
    def encode_input(self, input, side: str | None = None):
        max_layers = None
        if side == "qry":
            max_layers = self.qry_lm_layers
        elif side == "tgt":
            max_layers = self.tgt_lm_layers

        with self._limit_lm_layers(self.encoder, max_layers):
            if getattr(self, "model_backbone", None) == INTERNVIDEO2:
                if "input_ids" in input.keys():
                    # text side
                    text_output = self.encoder.get_text_encoder()(
                        input["input_ids"],
                        attention_mask=input["attention_mask"],
                        return_dict=True,
                        mode="text",
                    )
                    text_embeds = text_output.last_hidden_state
                    pooled_text_embeds = text_embeds[:, 0]
                    pooled_output = self.encoder.text_proj(pooled_text_embeds)
                    pooled_output /= pooled_output.norm(dim=-1, keepdim=True)
                    return pooled_output
                else:
                    _, vfeat = self.encoder.encode_vision(input["pixel_values"], test=True)
                    vfeat = self.encoder.vision_proj(vfeat)
                    vfeat /= vfeat.norm(dim=-1, keepdim=True)
                    return vfeat
            elif getattr(self, "model_backbone", None) in [GME, LamRA, LamRA_QWEN2_5]:
                # pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
                texts = [text.replace(VLM_IMAGE_TOKENS[QWEN2_VL] + '\n', '') for text in input["texts"]] # we are actually passing video queries so this should not happen
                images = []
                for imgs in input['images']:
                    # if multi images are given, select the middle frame only
                    if isinstance(imgs, list):
                        imgs = imgs[len(imgs) // 2]
                        assert not isinstance(imgs, list) # make sure we have extracted the middle frame and it is no longer a list
                        images.append(imgs)
                    else:
                        images.append(imgs)
                pooled_output = self.encoder.get_fused_embeddings(texts=texts, images=images)
                return pooled_output
            elif getattr(self, "model_backbone", None) == COLPALI:
                pooled_output = self.encoder(**input, return_dict=True, output_hidden_states=True)
                return pooled_output
            elif getattr(self, "model_backbone", None) == LLAVA_NEXT:
                input['pixel_values'] = input['pixel_values'].squeeze(dim=1)
                input['image_sizes'] = input['image_sizes'].squeeze(dim=1)
                hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
                hidden_states = hidden_states.hidden_states[-1]
                pooled_output = self._pooling(hidden_states, input['attention_mask'])
                return pooled_output
            else:
                # hidden_states = self.encoder(**input, return_dict=True, output_hidden_states=True)
                # # hidden_states = self.encoder(**input, compression_rate=compression_rate, return_dict=True, output_hidden_states=True)
                # hidden_states = hidden_states.hidden_states[-1]
                # pooled_output = self._pooling(hidden_states, input['attention_mask'])
                # return pooled_output
                # hidden_states = outputs.hidden_states
                # pooled_from_layer20 = self._pooling(hidden_states[20], input["attention_mask"])
                # pooled_from_last = self._pooling(hidden_states[-1], input["attention_mask"])
                # return {
                #     "layer20": pooled_from_layer20,
                #     "last": pooled_from_last,
                # }
                outputs = self.encoder(**input, return_dict=True, output_hidden_states=True)
                img_masks = getattr(outputs, "image_token_bool_masks", None)
                if img_masks is None:
                    try:
                        img_masks = outputs.get("image_token_bool_masks", None)
                    except Exception:
                        pass
                self._last_image_token_bool_masks = img_masks

                hs = outputs.hidden_states
                if isinstance(hs, (list, tuple)):
                    last_hidden = hs[-1]            # [B, L, D]
                else:
                    last_hidden = hs                 # [B, L, D](如果底模走了 glimpse 路径)
                attn = getattr(outputs, "attention_mask", None)
                # print('attn:', attn)
                # exit()
                if attn is None:
                    attn = input["attention_mask"]

                pooled_output = self._pooling(last_hidden, attn)
                return pooled_output

    def _pooling(self, last_hidden_state, attention_mask):
        if self.pooling == 'last' or self.pooling == 'eos':
            left_padding = (attention_mask[:, -1].sum() == attention_mask.shape[0])
            batch_size = last_hidden_state.shape[0]
            if left_padding:
                # Get the vectors at the last position
                reps = last_hidden_state[torch.arange(batch_size), -1, :]
            else:
                # Calculate last 1 position in the original tensor
                eos_indices = attention_mask.sum(dim=1) - 1
                # Get the vectors at the last 1 position of each attention mask
                reps = last_hidden_state[
                    torch.arange(batch_size, device=last_hidden_state.device), eos_indices]
        else:
            raise NotImplementedError
        if self.normalize:
            reps = torch.nn.functional.normalize(reps, p=2, dim=-1)
        return reps

    @classmethod
    def build(cls, model_args: ModelArguments, **kwargs):
        config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
        variant = getattr(config, "backbone_variant", None)
        if variant == "layerprune":
            model_backbone = "QWEN2_VL_LayerPrune"
        else:
            model_backbone = get_backbone_name(hf_config=config)
        print_master(f'Loading backbone [{model_backbone}] from {model_args.model_name}')
        # Loading the base model
        if model_backbone == PHI3V:
            config._attn_implementation = "eager"
            config.padding_side = "right"
            config.use_cache = False
            base_model = Phi3VForCausalLM.from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone == LLAVA_NEXT:
            config.use_cache = False
            config.padding_side = "left"
            base_model = LlavaNextForConditionalGeneration.from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in [QWEN2_VL, QWEN2_5_VL]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False
            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in ["QWEN2_VL_LayerPrune"]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False
            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
            )
        elif model_backbone in [QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION]:
            config._attn_implementation = "flash_attention_2"
            config.padding_side = "left"
            config.use_cache = False

            from .utils import parse_layer_type
            lm_qwen_layer = 28
            vis_qwen_layer = 32
            lm_skip_layer = parse_layer_type(model_args.lm_skip_layer, lm_qwen_layer)
            vis_skip_layer = parse_layer_type(model_args.vis_skip_layer, vis_qwen_layer)

            base_model = backbone2model[model_backbone].from_pretrained(
                model_args.model_name,
                config=config,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                lm_skip_layer=lm_skip_layer,
                vis_skip_layer=vis_skip_layer,
            )
        else:
            config.use_cache = False
            base_model = cls.TRANSFORMER_CLS.from_pretrained(
                model_args.model_name, **kwargs, config=config,
                attn_implementation="flash_attention_2",
                torch_dtype=torch.bfloat16,
                trust_remote_code=True)

        if model_args.lora:
            print_master(f'Loading lora adapter from {base_model}')
            lora_config = LoraConfig(
                r=model_args.lora_r,
                lora_alpha=model_args.lora_alpha,
                target_modules=model_args.lora_target_modules.split(','),
                lora_dropout=model_args.lora_dropout,
                init_lora_weights="gaussian",
                use_dora=True,
                inference_mode=False
            )
            lora_model = get_peft_model(base_model, lora_config)
            model = cls(
                encoder=lora_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        else:
            model = cls(
                encoder=base_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        return model


    @classmethod
    def load(cls, model_args: ModelArguments, is_trainable=True, **kwargs):
        # Loading the base model
        model_name_or_path = model_args.checkpoint_path if model_args.checkpoint_path else model_args.model_name
        config = AutoConfig.from_pretrained(model_name_or_path, trust_remote_code=True)
        if not hasattr(model_args, "model_backbone") or not model_args.model_backbone:
            model_backbone = get_backbone_name(hf_config=config, model_type=model_args.model_type)
            setattr(model_args, 'model_backbone', model_backbone)
        print_master(f'Loading backbone [{model_args.model_backbone}] from {model_name_or_path}')
        if model_args.model_backbone in {LLAVA_NEXT, QWEN2_VL, QWEN2_5_VL, QWEN2_VL_TOKENSELECTION, QWEN2_5_VL_TOKENSELECTION, E5_V}:
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config._attn_implementation = "flash_attention_2"
            config.vision_config._attn_implementation = "flash_attention_2"
            base_model = backbone2model[model_args.model_backbone].from_pretrained(
                model_args.model_name,
                torch_dtype=torch.bfloat16,
                low_cpu_mem_usage=True,
                config=config
            )
        elif model_args.model_backbone == PHI3V:
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            config.padding_side = "right"
            base_model = Phi3VForCausalLM.from_pretrained(model_args.model_name, **kwargs, config=config,
                                                          torch_dtype=torch.bfloat16, trust_remote_code=True)
            base_model.padding_side = "right"
        elif model_args.model_backbone == INTERNVIDEO2:
            print_master(f'Loading backbone [{model_args.model_backbone}] from {"src/model/vlm_backbone/internvideo2/"}')
            config = AutoConfig.from_pretrained("src/model/vlm_backbone/internvideo2/",
                                                trust_remote_code=True)
            base_model = backbone2model[model_args.model_backbone].from_pretrained("src/model/vlm_backbone/internvideo2/", config=config,
                                                                                   trust_remote_code=True)
        elif model_args.model_backbone == GME:
            base_model = GmeQwen2VL(model_args.model_name, processor=kwargs['processor'])
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == LamRA:
            base_model = LamRAQwen2VL(model_args.model_name)
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == LamRA_QWEN2_5:
            base_model = LamRAQwen25VL(model_args.model_name)
            setattr(base_model, 'config', config)
        elif model_args.model_backbone == COLPALI:
            base_model = ColPali.from_pretrained(model_args.model_name)
            setattr(base_model, 'config', config)
        else:
            # Loading external base model from HF
            config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
            config.use_cache = False
            base_model = cls.TRANSFORMER_CLS.from_pretrained(
                model_name_or_path, **kwargs, config=config,
                torch_dtype=torch.bfloat16,
                trust_remote_code=True)

        # Building the model on top of the base
        if model_args.lora:
            print_master(f'Loading LoRA from {model_name_or_path}')
            lora_config = LoraConfig.from_pretrained(model_name_or_path)
            lora_model = PeftModel.from_pretrained(base_model, model_name_or_path, config=lora_config, is_trainable=is_trainable)
            lora_model.load_adapter(model_name_or_path, lora_model.active_adapter, is_trainable=is_trainable)
            if not is_trainable:
                lora_model = lora_model.merge_and_unload()
            model = cls(
                encoder=lora_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )
        else:
            model = cls(
                encoder=base_model,
                pooling=model_args.pooling,
                normalize=model_args.normalize,
                temperature=model_args.temperature
            )

        model.model_backbone = model_args.model_backbone
        return model

    def save(self, output_dir: str):
        self.encoder.save_pretrained(output_dir)

    def forward(self, qry: Dict[str, Tensor] = None, tgt: Dict[str, Tensor] = None, *args, **kwargs):
        qry_reps, tgt_reps = None, None

        if qry is not None:
            qry_reps = self.encode_input(qry, side="qry")   # 仅qry侧用裁层
        if tgt is not None:
            tgt_reps = self.encode_input(tgt, side="tgt")   # cand侧保持全层(或按你设置)

        # 只编码一侧时,按你之前的返回约定原样返回
        if qry_reps is None or tgt_reps is None:
            # return {"qry_reps": qry_reps, "tgt_reps": tgt_reps}
            out = {"qry_reps": qry_reps, "tgt_reps": tgt_reps}
            # NEW: 透传最近一次底模 forward 的图像 token 布尔掩码
            img_masks = getattr(self, "_last_image_token_bool_masks", None)
            if img_masks is not None:
                out["image_token_bool_masks"] = img_masks
            return out

        if self.is_ddp:
            all_qry_reps = self._dist_gather_tensor(qry_reps)
            all_tgt_reps = self._dist_gather_tensor(tgt_reps)
        else:
            all_qry_reps = qry_reps
            all_tgt_reps = tgt_reps

        scores = self.compute_similarity(all_qry_reps, all_tgt_reps)
        scores = scores.view(all_qry_reps.size(0), -1)
        target = torch.arange(scores.size(0), device=scores.device, dtype=torch.long)
        target = target * (all_qry_reps.size(0) // all_tgt_reps.size(0))
        loss = self.cross_entropy(scores / self.temperature, target)
        if self.is_ddp:
            loss = loss * self.world_size

        return loss

    def _dist_gather_tensor(self, t: Tensor):
        t = t.contiguous()
        all_tensors = [torch.empty_like(t) for _ in range(self.world_size)]
        dist.all_gather(all_tensors, t)
        all_tensors[self.process_rank] = t
        all_tensors = torch.cat(all_tensors, dim=0)
        return all_tensors

    def compute_similarity(self, q_reps, p_reps):
        return torch.matmul(q_reps, p_reps.transpose(0, 1))