File size: 25,648 Bytes
0a937d7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
import os
import re
import ast
import math
import yaml
import warnings
from datetime import datetime
from dataclasses import dataclass, field
from collections import defaultdict
from typing import Any, Callable, Optional, Union, Sized, Dict, Tuple, List, Literal, Type

import numpy as np
import torch
from torch import nn
import torch.nn.functional as F

import datasets

from PIL import Image

from trl import ModelConfig, ScriptArguments, TrlParser, get_peft_config
from trl.models import unwrap_model_for_generation

from transformers import (
    TrainingArguments, 
    Trainer,
    GenerationConfig,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
    is_safetensors_available, 
    is_peft_available
)

if is_safetensors_available():
    import safetensors.torch
from peft import PeftConfig, get_peft_model, PeftModel
from accelerate.utils import is_peft_model, set_seed

from qwen_vl_utils import process_vision_info

from src.model.vlm_backbone.qwen2_5_vl_gp.process_gp import Qwen2_5_VL_GP_Processor

from transformers.trainer import (
    logger,
    TRAINING_ARGS_NAME,
    CONFIG_NAME,
    ADAPTER_WEIGHTS_NAME,
    ADAPTER_SAFE_WEIGHTS_NAME,
    WEIGHTS_NAME,
    WEIGHTS_INDEX_NAME,
    SAFE_WEIGHTS_NAME,
    SAFE_WEIGHTS_INDEX_NAME,
    FSDP_MODEL_NAME,
)

from src.model.vlm_backbone.qwen2_5_vl_gp.warppers import debug_calls
from src.utils_gp import (
    LLMClient, 
    norm_bboxes, 
    extract_one_bbox_from_str, 
    cal_paired_ious,
    print_rank0
)


# ---------- Datasets ----------

QUERY_KEY = "query"
IMG_PATH_KEY = "img_path"
ANSWER_KEY = "answer"
NORMED_BBOXES_KEY = "normed_bboxes"
SCORE_FUNCS_KEY = "score_funcs"

REMAIN_KEYS = [
    QUERY_KEY,
    IMG_PATH_KEY,
    NORMED_BBOXES_KEY,
    ANSWER_KEY,
    SCORE_FUNCS_KEY,
]

MAPPER_REGISTRY: Dict[str, Callable] = {}
FILTER_REGISTRY: Dict[str, Callable] = {}

def register_mappers():
    def wrapper(func):
        name = func.__name__.replace("_dataset_mapper", "")
        MAPPER_REGISTRY[name] = func
        return func
    return wrapper

def register_filters():
    def wrapper(func):
        name = func.__name__.replace("_dataset_filter", "")
        FILTER_REGISTRY[name] = func
        return func
    return wrapper


@register_mappers()
def cot_train_dataset_mapper(one_data, **kwargs):
    query = one_data['question']
    if 'prompt' in kwargs:
        query = kwargs['prompt'].format(query)
    answer = one_data['answer']
    image = one_data['image']
    dataset = one_data['dataset']
    img_path = os.path.join(kwargs['img_dir'], "cot", dataset, image)
    bboxes = one_data['bboxs']
    return {
        QUERY_KEY: query,
        ANSWER_KEY: answer,
        IMG_PATH_KEY: img_path,
        NORMED_BBOXES_KEY: bboxes,
        SCORE_FUNCS_KEY: kwargs['score_funcs']
    }    
    

@register_mappers()
def cot_train_fullmask_dataset_mapper(one_data, **kwargs):
    query = one_data['question']
    if 'prompt' in kwargs:
        query = kwargs['prompt'].format(query)
    answer = one_data['answer']
    image = one_data['image']
    dataset = one_data['dataset']
    img_path = os.path.join(kwargs['img_dir'], "cot", dataset, image)
    normed_bboxes = [[0.0, 0.0, 1.0, 1.0]]
    return {
        QUERY_KEY: query,
        ANSWER_KEY: answer,
        IMG_PATH_KEY: img_path,
        NORMED_BBOXES_KEY: normed_bboxes,
        SCORE_FUNCS_KEY: kwargs['score_funcs']
    }    
    
    
@register_mappers()
def norm_bboxes_dataset_mapper(one_data, **kwargs):
    bboxes = one_data.pop(NORMED_BBOXES_KEY)
    if 'width' in one_data:
        width = one_data['width']
        height = one_data['height']
    else:
        img_path = one_data[IMG_PATH_KEY]
        img_pil = Image.open(img_path)
        width, height = img_pil.size
        img_pil.close()
    normed_bboxes = norm_bboxes(bboxes, height, width, bbox_type=kwargs['bbox_type'])
    one_data[NORMED_BBOXES_KEY] = normed_bboxes
    return one_data

    
@register_filters()
def image_exist_dataset_filter(one_data, **kwargs):
    img_path = one_data[IMG_PATH_KEY]
    try:
        img = Image.open(img_path)
        img.close()
        return True
    except (FileNotFoundError, OSError) as e:
        print_rank0(f"Image not found or invalid: {img_path}. Error: {e}")
        return False
    except Exception as e:
        print_rank0(f"Unexpected error while checking image: {img_path}. Error: {e}")
        return False
    
@register_filters()
def inputs_seq_length_dataset_filter(one_data, **kwargs):
    processor = kwargs['processor']
    max_input_seq_length = kwargs.get('max_input_seq_length', None)
    max_input_remain_seq_length = kwargs.get('max_input_remain_seq_length', None)
    if max_input_seq_length is None and max_input_remain_seq_length is None:
        return True
    img_path = one_data[IMG_PATH_KEY]
    query = one_data[QUERY_KEY]
    normed_bboxes = [one_data[NORMED_BBOXES_KEY]] if max_input_remain_seq_length is not None else None
    messages = [[{"role": "user", "content": [{"type": "image", "image": img_path}, {"type": "text", "text": query}]}]]
    text = processor.apply_chat_template(
        messages, tokenize=False, add_generation_prompt=True
    )
    image_inputs, video_inputs = process_vision_info(messages)
    inputs = processor(
            text=text,
            images=image_inputs,
            videos=video_inputs,
            normed_bboxes=normed_bboxes,
            padding=True,
            return_tensors="pt",
        )
    seq_length = inputs.input_ids.shape[1]
    if max_input_seq_length is not None and seq_length > max_input_seq_length:
        return False
    
    if max_input_remain_seq_length is not None:
        ref_token_masks = inputs.ref_token_masks[0]
        reduced_num = ref_token_masks.numel() - ref_token_masks.sum().item()
        remain_seq_length = seq_length - reduced_num
        if remain_seq_length > max_input_remain_seq_length:
            return False
    return True


# ---------- Loss ----------

LOSS_REGISTRY: Dict[str, Type[nn.Module]] = {}

def register_loss(loss_class):
    name = loss_class.__name__
    if name in LOSS_REGISTRY:
        raise ValueError(f"Loss class '{name}' is already registered.")
    LOSS_REGISTRY[name] = loss_class
    return loss_class


@register_loss
class DiceLoss(nn.Module):
    def __init__(self, epsilon: float = 1e-6, **kwargs):
        super().__init__()
        self.epsilon = epsilon

    def forward(self, 
                image_token_mask_logits: List[torch.Tensor], 
                ref_token_masks: List[torch.Tensor]
               ) -> torch.Tensor:
        if not isinstance(image_token_mask_logits, list) or not isinstance(ref_token_masks, list):
            raise TypeError("Inputs must be lists of tensors.")
        if len(image_token_mask_logits) != len(ref_token_masks):
            raise ValueError(f"Input lists must have the same length, but got "
                             f"{len(image_token_mask_logits)} and {len(ref_token_masks)}")
        if len(image_token_mask_logits) == 0:
            return torch.tensor(0.0, device=image_token_mask_logits[0].device if image_token_mask_logits else None) 

        batch_size = len(image_token_mask_logits)
        total_dice_loss = 0.0

        for i in range(batch_size):
            pred_mask_1d = image_token_mask_logits[i].flatten().sigmoid()
            gt_mask_1d = ref_token_masks[i].flatten().to(pred_mask_1d.device, dtype=torch.float)
            intersection = (pred_mask_1d * gt_mask_1d).sum()
            pred_sum = pred_mask_1d.sum()
            gt_sum = gt_mask_1d.sum()
            dice_coefficient = (2.0 * intersection + self.epsilon) / (pred_sum + gt_sum + self.epsilon)
            total_dice_loss += (1.0 - dice_coefficient)

        return total_dice_loss / batch_size


@register_loss
class BCELoss(nn.Module):
    def ___init__(self, **kwargs):
        super(BCELoss, self).__init__()
        
    def forward(self, 
                image_token_mask_logits: List[torch.Tensor], 
                ref_token_masks: List[torch.Tensor]
               ) -> torch.Tensor:
        
        batch_size = len(image_token_mask_logits)
        total_bce_loss = 0.0
        for i in range(batch_size):
            pred_mask_1d = image_token_mask_logits[i].flatten()
            gt_mask_1d = ref_token_masks[i].flatten().to(pred_mask_1d.device)
            bce_loss = F.binary_cross_entropy_with_logits(
                pred_mask_1d.float(),
                gt_mask_1d.float(),
            )
            total_bce_loss += bce_loss
        return total_bce_loss / batch_size


@register_loss
class MaskLoss(nn.Module):
    def __init__(self, 
                 dice_weight: float = 0.5,
                 bce_weight: float = 0.5,
                 epsilon: float = 1e-6,
                 **kwargs):
        super().__init__()
        self.dice_loss = DiceLoss(epsilon=epsilon)
        self.bce_loss = BCELoss()
        self.dice_weight = dice_weight
        self.bce_weight = bce_weight
    
    def forward(self, image_token_mask_logits: List[torch.Tensor],
                ref_token_masks: List[torch.Tensor]
               ) -> torch.Tensor:
        dice_loss = self.dice_loss(image_token_mask_logits, ref_token_masks)
        bce_loss = self.bce_loss(image_token_mask_logits, ref_token_masks)
        return self.dice_weight * dice_loss + self.bce_weight * bce_loss


# ---------- (Stub) Score functions (for YAML compatibility) ----------

SCORE_REGISTRY: Dict[str, Callable] = {}

def register_score():
    def wrapper(func):
        name = func.__name__.replace("_score", "")
        SCORE_REGISTRY[name] = func
        return func
    return wrapper

@register_score()
def llm_score(query, completion, answer, args):
    """
    YAML 里可能写了 'score_funcs: [llm]'。本工程不使用这些分数,返回 0 占位即可。
    """
    # 返回与 batch 大小一致的 0 分
    if isinstance(query, list):
        return [0.0] * len(query)
    return [0.0]


# ---------- Dataset & Collator & Sampler ----------

def _resolve_rel_path(rel_path: str, base_dir: str) -> str:
    """
    Resolve a relative path against base_dir; if not found, try parent dirs up to 4 levels.
    """
    if os.path.isabs(rel_path):
        return rel_path
    candidates = [os.path.join(base_dir, rel_path)]
    parent = base_dir
    for _ in range(4):
        parent = os.path.dirname(parent)
        if not parent or parent in ("/", ""):
            break
        candidates.append(os.path.join(parent, rel_path))
    for cand in candidates:
        if os.path.exists(cand):
            return cand
    return candidates[0]


class GPDataset(torch.utils.data.Dataset):
    """
    A PyTorch Dataset that loads and combines multiple datasets
    based on a YAML configuration file. It handles sampling
    and applies specified mapping functions.
    """
    @classmethod
    def _load_config(cls, config_path: str) -> Dict[str, Any]:
        print_rank0(f"Loading configuration from: {config_path}")
        try:
            with open(config_path, 'r', encoding='utf-8') as f:
                conf = yaml.safe_load(f)
            if conf is None:
                raise ValueError("YAML config is empty.")

            base_dir = os.path.dirname(config_path)
            # 允许传“顶层训练配置”:里面用 train_dataset 指向真正的数据清单
            if 'datasets' not in conf:
                if 'train_dataset' in conf:
                    ds_yaml = _resolve_rel_path(conf['train_dataset'], base_dir)
                    print_rank0(f"Loading dataset config from: {ds_yaml}")
                    with open(ds_yaml, 'r', encoding='utf-8') as f:
                        conf2 = yaml.safe_load(f)
                    if conf2 is None or 'datasets' not in conf2:
                        raise ValueError(f"'{ds_yaml}' missing 'datasets' key.")
                    conf = conf2
                    base_dir = os.path.dirname(ds_yaml)
                else:
                    raise ValueError("YAML config is missing both 'datasets' and 'train_dataset' keys.")

            conf['__root_dir__'] = base_dir
            print_rank0("Configuration loaded successfully.")
            return conf
        except Exception as e:
            print_rank0(f"Failed to load config: {e}")
            raise

    @classmethod
    def _apply_sampling(cls, dataset: datasets.Dataset, strategy: Optional[str], seed: Optional[int] = None) -> datasets.Dataset:
        """Applies sampling strategy to a dataset."""
        if not strategy:
            print_rank0("No sampling strategy specified, using full dataset.")
            return dataset

        try:
            parts = strategy.split(':')
            if len(parts) != 2:
                raise ValueError(f"Invalid sampling strategy format: '{strategy}'. Expected 'type:value'.")
            strat_type, strat_value = parts[0].lower(), parts[1]
            num_samples = int(strat_value)
            total_size = len(dataset)
            if num_samples <= 0:
                raise ValueError(f"Sampling value must be positive, got: {num_samples} [{strategy}]")
            num_samples = min(num_samples, total_size)

            print_rank0(f"Applying sampling: {strategy} ({num_samples} samples) to dataset of size {total_size}")

            if strat_type == "first":
                return dataset.select(range(num_samples))
            elif strat_type == "end":
                start_index = max(0, total_size - num_samples)
                return dataset.select(range(start_index, total_size))
            elif strat_type == "random":
                shuffled_dataset = dataset.shuffle(seed=seed)
                return shuffled_dataset.select(range(num_samples))
            else:
                print_rank0(f"Warning: Unknown sampling strategy type: '{strat_type}'. Using full dataset.")
                return dataset
        except ValueError as e:
            print_rank0(f"Error parsing sampling strategy '{strategy}': {e}. Using full dataset.")
            return dataset
        except Exception as e:
            print_rank0(f"An unexpected error occurred during sampling: {e}. Using full dataset.")
            return dataset
        
    @classmethod
    def _all_processed_datasets(cls, config, processor, args):
        root_dir = config.get('__root_dir__', os.getcwd())
        all_processed_datasets: Dict[str, datasets.Dataset] = {}
        for i, dataset_config in enumerate(config['datasets']):
            print_rank0(f"\nProcessing dataset entry {i+1}/{len(config['datasets'])}...")
            json_path = dataset_config.get('json_path')
            if not json_path:
                print_rank0(f"Warning: Skipping dataset entry {i+1} due to missing 'json_path'.")
                continue
            json_path = _resolve_rel_path(json_path, root_dir)

            base_name = '.'.join(os.path.basename(json_path).split('.')[:-1])
            dataset_name = dataset_config.get('dataset_name', base_name)

            sampling_strategy = dataset_config.get('sampling_strategy', None)
            sampling_seed = dataset_config['sampling_seed'] if 'sampling_seed' in dataset_config else getattr(args, 'sampling_seed', 42)

            mapper_name = dataset_config.get('mapper')
            bbox_type = dataset_config.get('bbox_type')

            # img_dir: 优先用数据 YAML 里的;否则尝试 args.img_dir(可能不存在)
            if 'img_dir' in dataset_config:
                img_dir = _resolve_rel_path(dataset_config['img_dir'], root_dir)
            else:
                img_dir = getattr(args, 'img_dir', None)
                if img_dir is not None:
                    img_dir = _resolve_rel_path(img_dir, root_dir)

            additional_mappers = dataset_config.get('additional_mappers', [])
            score_funcs = dataset_config.get('score_funcs', [])
            prompt = dataset_config.get('prompt', None)

            max_input_seq_length = dataset_config['max_input_seq_length'] if 'max_input_seq_length' in dataset_config else getattr(args, 'max_input_seq_length', None)
            max_input_remain_seq_length = dataset_config['max_input_remain_seq_length'] if 'max_input_remain_seq_length' in dataset_config else getattr(args, 'max_input_remain_seq_length', None)
            
            # 安全处理 score_funcs:过滤未注册的(不报错,只警告)
            if score_funcs:
                filtered = []
                for sf in score_funcs:
                    if sf in SCORE_REGISTRY:
                        filtered.append(sf)
                    else:
                        print_rank0(f"Warning: Score function '{sf}' not registered. Will ignore.")
                score_funcs = filtered

            try:
                print_rank0(f"Loading raw data from: {json_path}")
                raw_dataset = datasets.load_dataset('json', data_files=json_path, split='train')
                print_rank0(f"Loaded {len(raw_dataset)} examples raw.")

                sampled_dataset = cls._apply_sampling(raw_dataset, sampling_strategy, sampling_seed)
                if len(sampled_dataset) == 0:
                    print_rank0("Dataset is empty after sampling, skipping.")
                    continue
                print_rank0(f"Dataset size after sampling: {len(sampled_dataset)}")

                mapper_func = MAPPER_REGISTRY[mapper_name]
                print_rank0(f"Applying mapper: '{mapper_name}'")
                mapper_kwargs = {
                    'img_dir': img_dir,
                    'score_funcs': score_funcs,
                }
                if prompt is not None:
                    mapper_kwargs['prompt'] = prompt
                print_rank0(f"Mapper arguments: {mapper_kwargs}")

                processed_dataset = sampled_dataset.map(
                    mapper_func,
                    num_proc=8,
                    fn_kwargs=mapper_kwargs,
                )

                processed_dataset = processed_dataset.remove_columns(
                    [col for col in processed_dataset.column_names if col not in REMAIN_KEYS]
                )
                    
                print_rank0("Applying dataset filter: 'image_exist_dataset_filter'")
                processed_dataset = processed_dataset.filter(
                    image_exist_dataset_filter,
                    num_proc=8,
                    fn_kwargs={}
                )
                print_rank0(f"Processed dataset size after image_exist_dataset_filter: {len(processed_dataset)}")
                
                if max_input_seq_length is not None or max_input_remain_seq_length is not None:
                    processed_dataset = processed_dataset.filter(
                        inputs_seq_length_dataset_filter,
                        num_proc=8,
                        fn_kwargs={
                            'processor': processor,
                            'max_input_seq_length': max_input_seq_length,
                            'max_input_remain_seq_length': max_input_remain_seq_length,
                        }
                    )
                    print_rank0(f"Processed dataset size after inputs_seq_length_dataset_filter: {len(processed_dataset)}")
                
                for additional_mapper in additional_mappers:
                    mapper_func = MAPPER_REGISTRY[additional_mapper]
                    print_rank0(f"Applying additional mapper: '{additional_mapper}'")
                    processed_dataset = processed_dataset.map(
                        mapper_func,
                        num_proc=8,
                        fn_kwargs={
                            'bbox_type': bbox_type,
                        }
                    )
                print_rank0(f"Processed dataset size: {len(processed_dataset)}")
                if len(processed_dataset) == 0:
                    print_rank0(f"Warning: Processed dataset {dataset_name} is empty after mapping. Skipping.")
                    continue

                if dataset_name in all_processed_datasets:
                    dataset_name_with_uuid = f"{dataset_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
                    print_rank0(f"Warning: Dataset name '{dataset_name}' already exists. Renaming to '{dataset_name_with_uuid}'")
                    all_processed_datasets[dataset_name_with_uuid] = processed_dataset
                else:
                    all_processed_datasets[dataset_name] = processed_dataset                

            except FileNotFoundError:
                print_rank0(f"Error: Data file not found for dataset entry {i+1}: {json_path}. Skipping.")
            except Exception as e:
                print_rank0(f"Error processing dataset entry {i+1} ({json_path}): {e}. Skipping.")
                
        return all_processed_datasets
        

    def __init__(self, config_path: str, processor: Qwen2_5_VL_GP_Processor, script_args: Optional[Any] = None):
        """
        Initializes the GPDataset.

        Args:
            config_path (str): Path to the YAML configuration file.
            processor (Qwen2_5_VL_GP_Processor): Processor for handling text and vision data.
            script_args (Any, optional): Additional arguments passed from the script
                                         (e.g., training args, could contain seed). Defaults to None.
        """
        super().__init__()
        self.args = script_args
        self.config = self._load_config(config_path)
        self.processor = processor
        all_processed_datasets = self._all_processed_datasets(self.config, self.processor, self.args)
        if all_processed_datasets:
            print_rank0(f"\nConcatenating {len(all_processed_datasets)} processed dataset(s)...")
            self.final_dataset = datasets.concatenate_datasets(list(all_processed_datasets.values()))
            if len(self.final_dataset) == 0:
                raise ValueError("Final dataset is empty after concatenation.")
            print_rank0(f"Final combined dataset size: {len(self.final_dataset)}")
            print_rank0(f"Final dataset features: {self.final_dataset.features}")
        else:
            raise ValueError("No datasets were successfully processed. Please check your configuration.")
            self.final_dataset = None

    def __len__(self) -> int:
        return len(self.final_dataset) if self.final_dataset else 0

    def __getitem__(self, index: int) -> Dict[str, Any]:
        if self.final_dataset is None:
            raise IndexError("Dataset is not initialized or is empty.")
        if not 0 <= index < len(self.final_dataset):
             raise IndexError(f"Index {index} out of bounds for dataset of size {len(self.final_dataset)}")
        return self.final_dataset[index]
    
    
    @classmethod
    def get_processed_dataset_dict(cls, config_path: str, processor: Qwen2_5_VL_GP_Processor, script_args: Optional[Any] = None) -> Dict[str, datasets.Dataset]:
        config = cls._load_config(config_path)
        all_processed_datasets = cls._all_processed_datasets(config, processor, script_args)
        return all_processed_datasets



class GPCollator:
    def __init__(self, processor, is_sft):
        self.processor = processor
        self.is_sft = is_sft
        self.im_start_id = self.processor.tokenizer.encode("<|im_start|>")[0]
        
    def _prepare_labels_from_input_ids(self, input_ids):
        B, L = input_ids.shape
        labels = input_ids.clone()
        mask = input_ids == self.im_start_id
        flipped_mask = mask.flip(dims=(1,))
        first_idx_in_flipped = torch.argmax(flipped_mask.int(), dim=1)
        last_pos = (L - 1) - first_idx_in_flipped
        mask_until_idx = last_pos + 3
        mask_until_idx = torch.clamp(mask_until_idx, max=L)
        arange_l = torch.arange(L, device=input_ids.device).expand(B, -1)
        modification_mask = arange_l < mask_until_idx.unsqueeze(1)
        labels[modification_mask] = -100
        return labels
        
    def __call__(self, features):
        messages = []
        normed_bboxes = []
        answers = []
        querys = []
        score_funcs = []
        for feature in features:
            query = feature[QUERY_KEY]
            answer = feature[ANSWER_KEY]
            img_path = feature[IMG_PATH_KEY]
            if self.is_sft:
                messages.append([{"role": "user", "content": [{"type": "image", "image": img_path}, {"type": "text", "text": query}]}, {"role": "assistant", "content": [{"type": "text", "text": answer}]}])
            else:
                messages.append([{"role": "user", "content": [{"type": "image", "image": img_path}, {"type": "text", "text": query}]}])
            normed_bboxes.append(feature[NORMED_BBOXES_KEY])
            querys.append(query)
            answers.append(answer)
            score_funcs.append(feature[SCORE_FUNCS_KEY])
        
        text = self.processor.apply_chat_template(
            messages, tokenize=False, add_generation_prompt=(not self.is_sft)
        )
        image_inputs, video_inputs = process_vision_info(messages)
        inputs = self.processor(
            text=text,
            normed_bboxes=normed_bboxes,
            images=image_inputs,
            videos=video_inputs,
            padding=True,
            return_tensors="pt",
        )
        
        if self.is_sft:
            labels = self._prepare_labels_from_input_ids(inputs.input_ids)
            inputs["labels"] = labels
        
        inputs[QUERY_KEY] = querys
        inputs[ANSWER_KEY] = answers
        inputs[SCORE_FUNCS_KEY] = score_funcs
        return inputs