File size: 25,648 Bytes
0a937d7 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
import os
import re
import ast
import math
import yaml
import warnings
from datetime import datetime
from dataclasses import dataclass, field
from collections import defaultdict
from typing import Any, Callable, Optional, Union, Sized, Dict, Tuple, List, Literal, Type
import numpy as np
import torch
from torch import nn
import torch.nn.functional as F
import datasets
from PIL import Image
from trl import ModelConfig, ScriptArguments, TrlParser, get_peft_config
from trl.models import unwrap_model_for_generation
from transformers import (
TrainingArguments,
Trainer,
GenerationConfig,
)
from transformers.modeling_utils import PreTrainedModel
from transformers.utils import (
is_safetensors_available,
is_peft_available
)
if is_safetensors_available():
import safetensors.torch
from peft import PeftConfig, get_peft_model, PeftModel
from accelerate.utils import is_peft_model, set_seed
from qwen_vl_utils import process_vision_info
from src.model.vlm_backbone.qwen2_5_vl_gp.process_gp import Qwen2_5_VL_GP_Processor
from transformers.trainer import (
logger,
TRAINING_ARGS_NAME,
CONFIG_NAME,
ADAPTER_WEIGHTS_NAME,
ADAPTER_SAFE_WEIGHTS_NAME,
WEIGHTS_NAME,
WEIGHTS_INDEX_NAME,
SAFE_WEIGHTS_NAME,
SAFE_WEIGHTS_INDEX_NAME,
FSDP_MODEL_NAME,
)
from src.model.vlm_backbone.qwen2_5_vl_gp.warppers import debug_calls
from src.utils_gp import (
LLMClient,
norm_bboxes,
extract_one_bbox_from_str,
cal_paired_ious,
print_rank0
)
# ---------- Datasets ----------
QUERY_KEY = "query"
IMG_PATH_KEY = "img_path"
ANSWER_KEY = "answer"
NORMED_BBOXES_KEY = "normed_bboxes"
SCORE_FUNCS_KEY = "score_funcs"
REMAIN_KEYS = [
QUERY_KEY,
IMG_PATH_KEY,
NORMED_BBOXES_KEY,
ANSWER_KEY,
SCORE_FUNCS_KEY,
]
MAPPER_REGISTRY: Dict[str, Callable] = {}
FILTER_REGISTRY: Dict[str, Callable] = {}
def register_mappers():
def wrapper(func):
name = func.__name__.replace("_dataset_mapper", "")
MAPPER_REGISTRY[name] = func
return func
return wrapper
def register_filters():
def wrapper(func):
name = func.__name__.replace("_dataset_filter", "")
FILTER_REGISTRY[name] = func
return func
return wrapper
@register_mappers()
def cot_train_dataset_mapper(one_data, **kwargs):
query = one_data['question']
if 'prompt' in kwargs:
query = kwargs['prompt'].format(query)
answer = one_data['answer']
image = one_data['image']
dataset = one_data['dataset']
img_path = os.path.join(kwargs['img_dir'], "cot", dataset, image)
bboxes = one_data['bboxs']
return {
QUERY_KEY: query,
ANSWER_KEY: answer,
IMG_PATH_KEY: img_path,
NORMED_BBOXES_KEY: bboxes,
SCORE_FUNCS_KEY: kwargs['score_funcs']
}
@register_mappers()
def cot_train_fullmask_dataset_mapper(one_data, **kwargs):
query = one_data['question']
if 'prompt' in kwargs:
query = kwargs['prompt'].format(query)
answer = one_data['answer']
image = one_data['image']
dataset = one_data['dataset']
img_path = os.path.join(kwargs['img_dir'], "cot", dataset, image)
normed_bboxes = [[0.0, 0.0, 1.0, 1.0]]
return {
QUERY_KEY: query,
ANSWER_KEY: answer,
IMG_PATH_KEY: img_path,
NORMED_BBOXES_KEY: normed_bboxes,
SCORE_FUNCS_KEY: kwargs['score_funcs']
}
@register_mappers()
def norm_bboxes_dataset_mapper(one_data, **kwargs):
bboxes = one_data.pop(NORMED_BBOXES_KEY)
if 'width' in one_data:
width = one_data['width']
height = one_data['height']
else:
img_path = one_data[IMG_PATH_KEY]
img_pil = Image.open(img_path)
width, height = img_pil.size
img_pil.close()
normed_bboxes = norm_bboxes(bboxes, height, width, bbox_type=kwargs['bbox_type'])
one_data[NORMED_BBOXES_KEY] = normed_bboxes
return one_data
@register_filters()
def image_exist_dataset_filter(one_data, **kwargs):
img_path = one_data[IMG_PATH_KEY]
try:
img = Image.open(img_path)
img.close()
return True
except (FileNotFoundError, OSError) as e:
print_rank0(f"Image not found or invalid: {img_path}. Error: {e}")
return False
except Exception as e:
print_rank0(f"Unexpected error while checking image: {img_path}. Error: {e}")
return False
@register_filters()
def inputs_seq_length_dataset_filter(one_data, **kwargs):
processor = kwargs['processor']
max_input_seq_length = kwargs.get('max_input_seq_length', None)
max_input_remain_seq_length = kwargs.get('max_input_remain_seq_length', None)
if max_input_seq_length is None and max_input_remain_seq_length is None:
return True
img_path = one_data[IMG_PATH_KEY]
query = one_data[QUERY_KEY]
normed_bboxes = [one_data[NORMED_BBOXES_KEY]] if max_input_remain_seq_length is not None else None
messages = [[{"role": "user", "content": [{"type": "image", "image": img_path}, {"type": "text", "text": query}]}]]
text = processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=True
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = processor(
text=text,
images=image_inputs,
videos=video_inputs,
normed_bboxes=normed_bboxes,
padding=True,
return_tensors="pt",
)
seq_length = inputs.input_ids.shape[1]
if max_input_seq_length is not None and seq_length > max_input_seq_length:
return False
if max_input_remain_seq_length is not None:
ref_token_masks = inputs.ref_token_masks[0]
reduced_num = ref_token_masks.numel() - ref_token_masks.sum().item()
remain_seq_length = seq_length - reduced_num
if remain_seq_length > max_input_remain_seq_length:
return False
return True
# ---------- Loss ----------
LOSS_REGISTRY: Dict[str, Type[nn.Module]] = {}
def register_loss(loss_class):
name = loss_class.__name__
if name in LOSS_REGISTRY:
raise ValueError(f"Loss class '{name}' is already registered.")
LOSS_REGISTRY[name] = loss_class
return loss_class
@register_loss
class DiceLoss(nn.Module):
def __init__(self, epsilon: float = 1e-6, **kwargs):
super().__init__()
self.epsilon = epsilon
def forward(self,
image_token_mask_logits: List[torch.Tensor],
ref_token_masks: List[torch.Tensor]
) -> torch.Tensor:
if not isinstance(image_token_mask_logits, list) or not isinstance(ref_token_masks, list):
raise TypeError("Inputs must be lists of tensors.")
if len(image_token_mask_logits) != len(ref_token_masks):
raise ValueError(f"Input lists must have the same length, but got "
f"{len(image_token_mask_logits)} and {len(ref_token_masks)}")
if len(image_token_mask_logits) == 0:
return torch.tensor(0.0, device=image_token_mask_logits[0].device if image_token_mask_logits else None)
batch_size = len(image_token_mask_logits)
total_dice_loss = 0.0
for i in range(batch_size):
pred_mask_1d = image_token_mask_logits[i].flatten().sigmoid()
gt_mask_1d = ref_token_masks[i].flatten().to(pred_mask_1d.device, dtype=torch.float)
intersection = (pred_mask_1d * gt_mask_1d).sum()
pred_sum = pred_mask_1d.sum()
gt_sum = gt_mask_1d.sum()
dice_coefficient = (2.0 * intersection + self.epsilon) / (pred_sum + gt_sum + self.epsilon)
total_dice_loss += (1.0 - dice_coefficient)
return total_dice_loss / batch_size
@register_loss
class BCELoss(nn.Module):
def ___init__(self, **kwargs):
super(BCELoss, self).__init__()
def forward(self,
image_token_mask_logits: List[torch.Tensor],
ref_token_masks: List[torch.Tensor]
) -> torch.Tensor:
batch_size = len(image_token_mask_logits)
total_bce_loss = 0.0
for i in range(batch_size):
pred_mask_1d = image_token_mask_logits[i].flatten()
gt_mask_1d = ref_token_masks[i].flatten().to(pred_mask_1d.device)
bce_loss = F.binary_cross_entropy_with_logits(
pred_mask_1d.float(),
gt_mask_1d.float(),
)
total_bce_loss += bce_loss
return total_bce_loss / batch_size
@register_loss
class MaskLoss(nn.Module):
def __init__(self,
dice_weight: float = 0.5,
bce_weight: float = 0.5,
epsilon: float = 1e-6,
**kwargs):
super().__init__()
self.dice_loss = DiceLoss(epsilon=epsilon)
self.bce_loss = BCELoss()
self.dice_weight = dice_weight
self.bce_weight = bce_weight
def forward(self, image_token_mask_logits: List[torch.Tensor],
ref_token_masks: List[torch.Tensor]
) -> torch.Tensor:
dice_loss = self.dice_loss(image_token_mask_logits, ref_token_masks)
bce_loss = self.bce_loss(image_token_mask_logits, ref_token_masks)
return self.dice_weight * dice_loss + self.bce_weight * bce_loss
# ---------- (Stub) Score functions (for YAML compatibility) ----------
SCORE_REGISTRY: Dict[str, Callable] = {}
def register_score():
def wrapper(func):
name = func.__name__.replace("_score", "")
SCORE_REGISTRY[name] = func
return func
return wrapper
@register_score()
def llm_score(query, completion, answer, args):
"""
YAML 里可能写了 'score_funcs: [llm]'。本工程不使用这些分数,返回 0 占位即可。
"""
# 返回与 batch 大小一致的 0 分
if isinstance(query, list):
return [0.0] * len(query)
return [0.0]
# ---------- Dataset & Collator & Sampler ----------
def _resolve_rel_path(rel_path: str, base_dir: str) -> str:
"""
Resolve a relative path against base_dir; if not found, try parent dirs up to 4 levels.
"""
if os.path.isabs(rel_path):
return rel_path
candidates = [os.path.join(base_dir, rel_path)]
parent = base_dir
for _ in range(4):
parent = os.path.dirname(parent)
if not parent or parent in ("/", ""):
break
candidates.append(os.path.join(parent, rel_path))
for cand in candidates:
if os.path.exists(cand):
return cand
return candidates[0]
class GPDataset(torch.utils.data.Dataset):
"""
A PyTorch Dataset that loads and combines multiple datasets
based on a YAML configuration file. It handles sampling
and applies specified mapping functions.
"""
@classmethod
def _load_config(cls, config_path: str) -> Dict[str, Any]:
print_rank0(f"Loading configuration from: {config_path}")
try:
with open(config_path, 'r', encoding='utf-8') as f:
conf = yaml.safe_load(f)
if conf is None:
raise ValueError("YAML config is empty.")
base_dir = os.path.dirname(config_path)
# 允许传“顶层训练配置”:里面用 train_dataset 指向真正的数据清单
if 'datasets' not in conf:
if 'train_dataset' in conf:
ds_yaml = _resolve_rel_path(conf['train_dataset'], base_dir)
print_rank0(f"Loading dataset config from: {ds_yaml}")
with open(ds_yaml, 'r', encoding='utf-8') as f:
conf2 = yaml.safe_load(f)
if conf2 is None or 'datasets' not in conf2:
raise ValueError(f"'{ds_yaml}' missing 'datasets' key.")
conf = conf2
base_dir = os.path.dirname(ds_yaml)
else:
raise ValueError("YAML config is missing both 'datasets' and 'train_dataset' keys.")
conf['__root_dir__'] = base_dir
print_rank0("Configuration loaded successfully.")
return conf
except Exception as e:
print_rank0(f"Failed to load config: {e}")
raise
@classmethod
def _apply_sampling(cls, dataset: datasets.Dataset, strategy: Optional[str], seed: Optional[int] = None) -> datasets.Dataset:
"""Applies sampling strategy to a dataset."""
if not strategy:
print_rank0("No sampling strategy specified, using full dataset.")
return dataset
try:
parts = strategy.split(':')
if len(parts) != 2:
raise ValueError(f"Invalid sampling strategy format: '{strategy}'. Expected 'type:value'.")
strat_type, strat_value = parts[0].lower(), parts[1]
num_samples = int(strat_value)
total_size = len(dataset)
if num_samples <= 0:
raise ValueError(f"Sampling value must be positive, got: {num_samples} [{strategy}]")
num_samples = min(num_samples, total_size)
print_rank0(f"Applying sampling: {strategy} ({num_samples} samples) to dataset of size {total_size}")
if strat_type == "first":
return dataset.select(range(num_samples))
elif strat_type == "end":
start_index = max(0, total_size - num_samples)
return dataset.select(range(start_index, total_size))
elif strat_type == "random":
shuffled_dataset = dataset.shuffle(seed=seed)
return shuffled_dataset.select(range(num_samples))
else:
print_rank0(f"Warning: Unknown sampling strategy type: '{strat_type}'. Using full dataset.")
return dataset
except ValueError as e:
print_rank0(f"Error parsing sampling strategy '{strategy}': {e}. Using full dataset.")
return dataset
except Exception as e:
print_rank0(f"An unexpected error occurred during sampling: {e}. Using full dataset.")
return dataset
@classmethod
def _all_processed_datasets(cls, config, processor, args):
root_dir = config.get('__root_dir__', os.getcwd())
all_processed_datasets: Dict[str, datasets.Dataset] = {}
for i, dataset_config in enumerate(config['datasets']):
print_rank0(f"\nProcessing dataset entry {i+1}/{len(config['datasets'])}...")
json_path = dataset_config.get('json_path')
if not json_path:
print_rank0(f"Warning: Skipping dataset entry {i+1} due to missing 'json_path'.")
continue
json_path = _resolve_rel_path(json_path, root_dir)
base_name = '.'.join(os.path.basename(json_path).split('.')[:-1])
dataset_name = dataset_config.get('dataset_name', base_name)
sampling_strategy = dataset_config.get('sampling_strategy', None)
sampling_seed = dataset_config['sampling_seed'] if 'sampling_seed' in dataset_config else getattr(args, 'sampling_seed', 42)
mapper_name = dataset_config.get('mapper')
bbox_type = dataset_config.get('bbox_type')
# img_dir: 优先用数据 YAML 里的;否则尝试 args.img_dir(可能不存在)
if 'img_dir' in dataset_config:
img_dir = _resolve_rel_path(dataset_config['img_dir'], root_dir)
else:
img_dir = getattr(args, 'img_dir', None)
if img_dir is not None:
img_dir = _resolve_rel_path(img_dir, root_dir)
additional_mappers = dataset_config.get('additional_mappers', [])
score_funcs = dataset_config.get('score_funcs', [])
prompt = dataset_config.get('prompt', None)
max_input_seq_length = dataset_config['max_input_seq_length'] if 'max_input_seq_length' in dataset_config else getattr(args, 'max_input_seq_length', None)
max_input_remain_seq_length = dataset_config['max_input_remain_seq_length'] if 'max_input_remain_seq_length' in dataset_config else getattr(args, 'max_input_remain_seq_length', None)
# 安全处理 score_funcs:过滤未注册的(不报错,只警告)
if score_funcs:
filtered = []
for sf in score_funcs:
if sf in SCORE_REGISTRY:
filtered.append(sf)
else:
print_rank0(f"Warning: Score function '{sf}' not registered. Will ignore.")
score_funcs = filtered
try:
print_rank0(f"Loading raw data from: {json_path}")
raw_dataset = datasets.load_dataset('json', data_files=json_path, split='train')
print_rank0(f"Loaded {len(raw_dataset)} examples raw.")
sampled_dataset = cls._apply_sampling(raw_dataset, sampling_strategy, sampling_seed)
if len(sampled_dataset) == 0:
print_rank0("Dataset is empty after sampling, skipping.")
continue
print_rank0(f"Dataset size after sampling: {len(sampled_dataset)}")
mapper_func = MAPPER_REGISTRY[mapper_name]
print_rank0(f"Applying mapper: '{mapper_name}'")
mapper_kwargs = {
'img_dir': img_dir,
'score_funcs': score_funcs,
}
if prompt is not None:
mapper_kwargs['prompt'] = prompt
print_rank0(f"Mapper arguments: {mapper_kwargs}")
processed_dataset = sampled_dataset.map(
mapper_func,
num_proc=8,
fn_kwargs=mapper_kwargs,
)
processed_dataset = processed_dataset.remove_columns(
[col for col in processed_dataset.column_names if col not in REMAIN_KEYS]
)
print_rank0("Applying dataset filter: 'image_exist_dataset_filter'")
processed_dataset = processed_dataset.filter(
image_exist_dataset_filter,
num_proc=8,
fn_kwargs={}
)
print_rank0(f"Processed dataset size after image_exist_dataset_filter: {len(processed_dataset)}")
if max_input_seq_length is not None or max_input_remain_seq_length is not None:
processed_dataset = processed_dataset.filter(
inputs_seq_length_dataset_filter,
num_proc=8,
fn_kwargs={
'processor': processor,
'max_input_seq_length': max_input_seq_length,
'max_input_remain_seq_length': max_input_remain_seq_length,
}
)
print_rank0(f"Processed dataset size after inputs_seq_length_dataset_filter: {len(processed_dataset)}")
for additional_mapper in additional_mappers:
mapper_func = MAPPER_REGISTRY[additional_mapper]
print_rank0(f"Applying additional mapper: '{additional_mapper}'")
processed_dataset = processed_dataset.map(
mapper_func,
num_proc=8,
fn_kwargs={
'bbox_type': bbox_type,
}
)
print_rank0(f"Processed dataset size: {len(processed_dataset)}")
if len(processed_dataset) == 0:
print_rank0(f"Warning: Processed dataset {dataset_name} is empty after mapping. Skipping.")
continue
if dataset_name in all_processed_datasets:
dataset_name_with_uuid = f"{dataset_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}"
print_rank0(f"Warning: Dataset name '{dataset_name}' already exists. Renaming to '{dataset_name_with_uuid}'")
all_processed_datasets[dataset_name_with_uuid] = processed_dataset
else:
all_processed_datasets[dataset_name] = processed_dataset
except FileNotFoundError:
print_rank0(f"Error: Data file not found for dataset entry {i+1}: {json_path}. Skipping.")
except Exception as e:
print_rank0(f"Error processing dataset entry {i+1} ({json_path}): {e}. Skipping.")
return all_processed_datasets
def __init__(self, config_path: str, processor: Qwen2_5_VL_GP_Processor, script_args: Optional[Any] = None):
"""
Initializes the GPDataset.
Args:
config_path (str): Path to the YAML configuration file.
processor (Qwen2_5_VL_GP_Processor): Processor for handling text and vision data.
script_args (Any, optional): Additional arguments passed from the script
(e.g., training args, could contain seed). Defaults to None.
"""
super().__init__()
self.args = script_args
self.config = self._load_config(config_path)
self.processor = processor
all_processed_datasets = self._all_processed_datasets(self.config, self.processor, self.args)
if all_processed_datasets:
print_rank0(f"\nConcatenating {len(all_processed_datasets)} processed dataset(s)...")
self.final_dataset = datasets.concatenate_datasets(list(all_processed_datasets.values()))
if len(self.final_dataset) == 0:
raise ValueError("Final dataset is empty after concatenation.")
print_rank0(f"Final combined dataset size: {len(self.final_dataset)}")
print_rank0(f"Final dataset features: {self.final_dataset.features}")
else:
raise ValueError("No datasets were successfully processed. Please check your configuration.")
self.final_dataset = None
def __len__(self) -> int:
return len(self.final_dataset) if self.final_dataset else 0
def __getitem__(self, index: int) -> Dict[str, Any]:
if self.final_dataset is None:
raise IndexError("Dataset is not initialized or is empty.")
if not 0 <= index < len(self.final_dataset):
raise IndexError(f"Index {index} out of bounds for dataset of size {len(self.final_dataset)}")
return self.final_dataset[index]
@classmethod
def get_processed_dataset_dict(cls, config_path: str, processor: Qwen2_5_VL_GP_Processor, script_args: Optional[Any] = None) -> Dict[str, datasets.Dataset]:
config = cls._load_config(config_path)
all_processed_datasets = cls._all_processed_datasets(config, processor, script_args)
return all_processed_datasets
class GPCollator:
def __init__(self, processor, is_sft):
self.processor = processor
self.is_sft = is_sft
self.im_start_id = self.processor.tokenizer.encode("<|im_start|>")[0]
def _prepare_labels_from_input_ids(self, input_ids):
B, L = input_ids.shape
labels = input_ids.clone()
mask = input_ids == self.im_start_id
flipped_mask = mask.flip(dims=(1,))
first_idx_in_flipped = torch.argmax(flipped_mask.int(), dim=1)
last_pos = (L - 1) - first_idx_in_flipped
mask_until_idx = last_pos + 3
mask_until_idx = torch.clamp(mask_until_idx, max=L)
arange_l = torch.arange(L, device=input_ids.device).expand(B, -1)
modification_mask = arange_l < mask_until_idx.unsqueeze(1)
labels[modification_mask] = -100
return labels
def __call__(self, features):
messages = []
normed_bboxes = []
answers = []
querys = []
score_funcs = []
for feature in features:
query = feature[QUERY_KEY]
answer = feature[ANSWER_KEY]
img_path = feature[IMG_PATH_KEY]
if self.is_sft:
messages.append([{"role": "user", "content": [{"type": "image", "image": img_path}, {"type": "text", "text": query}]}, {"role": "assistant", "content": [{"type": "text", "text": answer}]}])
else:
messages.append([{"role": "user", "content": [{"type": "image", "image": img_path}, {"type": "text", "text": query}]}])
normed_bboxes.append(feature[NORMED_BBOXES_KEY])
querys.append(query)
answers.append(answer)
score_funcs.append(feature[SCORE_FUNCS_KEY])
text = self.processor.apply_chat_template(
messages, tokenize=False, add_generation_prompt=(not self.is_sft)
)
image_inputs, video_inputs = process_vision_info(messages)
inputs = self.processor(
text=text,
normed_bboxes=normed_bboxes,
images=image_inputs,
videos=video_inputs,
padding=True,
return_tensors="pt",
)
if self.is_sft:
labels = self._prepare_labels_from_input_ids(inputs.input_ids)
inputs["labels"] = labels
inputs[QUERY_KEY] = querys
inputs[ANSWER_KEY] = answers
inputs[SCORE_FUNCS_KEY] = score_funcs
return inputs |