File size: 25,724 Bytes
ac8b25b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
import os
import json
import math
import time
import random
import datetime
import numpy as np
import torch
import torch.distributed as dist
from tqdm import tqdm
from torch.utils.data import DataLoader
from transformers import HfArgumentParser, AutoConfig
from sklearn.model_selection import train_test_split
import yaml
from datasets import concatenate_datasets
from src.arguments import ModelArguments, DataArguments, TrainingArguments
from src.data.collator.eval_collator import MultimodalEvalDataCollator
from src.data.eval_dataset.base_eval_dataset import AutoEvalPairDataset, generate_cand_dataset
from src.model.model_cut_layer_AOP_add_text_cut import MMEBModel
from src.model.processor import get_backbone_name, load_processor
from src.utils import batch_to_device, print_master
# ---------------- Utils ----------------
def _parse_bool(v: str, default=False):
if v is None:
return default
v = v.strip().lower()
return v in {"1", "true", "yes", "y", "t", "on"}
def _parse_int(v: str, default=None):
try:
return int(v) if v is not None else default
except Exception:
return default
def _parse_float(v: str, default=None):
try:
return float(v) if v is not None else default
except Exception:
return default
def get_env_aop_config():
enabled = _parse_bool(os.environ.get("AOP_ENABLED"), False)
apply_to = os.environ.get("AOP_APPLY", "qry").strip().lower()
layer_idx = _parse_int(os.environ.get("AOP_LAYER"), None)
mode = os.environ.get("AOP_MODE", "ratio").strip().lower()
prune_vision = _parse_bool(os.environ.get("AOP_PRUNE_VISION"), True)
prune_text = _parse_bool(os.environ.get("AOP_PRUNE_TEXT"), False)
keep_ratio_v = _parse_float(os.environ.get("AOP_KEEP_RATIO_VISION"), None)
keep_ratio_t = _parse_float(os.environ.get("AOP_KEEP_RATIO_TEXT"), None)
attn_agg = os.environ.get("AOP_ATTENTION_AGG", "mean").strip().lower()
ee_layer = _parse_int(os.environ.get("EE_LAYER"), None)
return {
"enabled": enabled,
"apply_to": apply_to,
"layer_idx": layer_idx,
"mode": mode,
"prune_vision": prune_vision,
"prune_text": prune_text,
"keep_ratio_vision": keep_ratio_v,
"keep_ratio_text": keep_ratio_t,
"attn_agg": attn_agg,
"ee_layer": ee_layer,
}
def pad_dataset_to_divisible(dataset, world_size):
num_samples = len(dataset)
if num_samples % world_size == 0:
return dataset, num_samples
num_to_add = world_size - (num_samples % world_size)
padding_data = dataset.select([i % len(dataset) for i in range(num_to_add)])
padded_dataset = concatenate_datasets([dataset, padding_data])
return padded_dataset, num_samples + num_to_add
# ---------- Candidate encode in one pass (mid+last) ----------
@torch.no_grad()
def encode_candidates_both_layers(model: MMEBModel, loader: DataLoader, training_args: TrainingArguments, mid_layer: int):
model.eval()
all_mid, all_last, all_ids = [], [], []
for inputs, infos in tqdm(loader, desc="[DUMP] Cands[BOTH]", disable=False):
inputs = batch_to_device(inputs, training_args.device)
# cand 侧不启用 AOP
aop_cfg = getattr(model.encoder, "aop_prune_config", None)
if isinstance(aop_cfg, dict) and aop_cfg:
aop_off = dict(aop_cfg)
aop_off["enabled"] = False
setattr(model.encoder, "aop_prune_config", aop_off)
with torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=True):
out = model.encoder(
**inputs,
return_dict=True,
output_hidden_states=True,
stop_at_layer=None,
compute_lm_head=False,
)
hs_list = out.hidden_states
assert hs_list is not None and len(hs_list) > mid_layer, "hidden_states too short for mid_layer"
mid_hs, last_hs = hs_list[mid_layer], hs_list[-1]
am = inputs.get("attention_mask", None)
if am is not None and hasattr(am, "device") and am.device != mid_hs.device:
am = am.to(mid_hs.device)
reps_mid = model._pooling(mid_hs, am).detach().float().cpu()
reps_last = model._pooling(last_hs, am).detach().float().cpu()
all_mid.append(reps_mid)
all_last.append(reps_last)
all_ids.extend([info["cand_name"] for info in infos])
# 恢复 AOP
if isinstance(aop_cfg, dict) and aop_cfg:
setattr(model.encoder, "aop_prune_config", aop_cfg)
cand_mid = torch.cat(all_mid, dim=0).numpy()
cand_last = torch.cat(all_last, dim=0).numpy()
return cand_mid, cand_last, all_ids
# ---------- Build Phase A features ----------
@torch.no_grad()
def build_phaseA_features_global(
reps_mid_t: torch.Tensor, # [B,D] GPU
cand_mid_t: torch.Tensor, # [Nc,D] GPU
am_mid: torch.Tensor, # [B,L]
input_ids: torch.Tensor, # [B,L]
cfg, # model.encoder.config
topk: int = 200,
temp: float = 0.05,
):
device = reps_mid_t.device
B = reps_mid_t.size(0)
# 相似度类
scores_t = reps_mid_t @ cand_mid_t.T
k = min(topk, scores_t.size(1))
vals_t, _ = torch.topk(scores_t, k=k, dim=1)
s1 = vals_t[:, 0]
s2 = vals_t[:, 1] if k >= 2 else torch.zeros_like(s1)
margin = s1 - s2
p_t = torch.softmax(vals_t / max(temp, 1e-6), dim=1)
H = -(p_t * (torch.log(p_t + 1e-12))).sum(dim=1) / math.log(max(k, 1))
sum_p2 = (p_t**2).sum(dim=1)
# 长度比例
am = am_mid.to(torch.bool)
iid = input_ids
image_token_id = getattr(cfg, "image_token_id", None)
video_token_id = getattr(cfg, "video_token_id", None)
bos_id = getattr(cfg, "bos_token_id", None)
eos_id = getattr(cfg, "eos_token_id", None)
pad_id = getattr(cfg, "pad_token_id", None)
is_image = (iid == image_token_id) if (image_token_id is not None and image_token_id >= 0) else torch.zeros_like(iid, dtype=torch.bool)
is_video = (iid == video_token_id) if (video_token_id is not None and video_token_id >= 0) else torch.zeros_like(iid, dtype=torch.bool)
is_vision = (is_image | is_video) & am
is_special = torch.zeros_like(iid, dtype=torch.bool)
for tid in [bos_id, eos_id, pad_id]:
if tid is not None and tid >= 0:
is_special |= (iid == tid)
is_text = am & (~is_vision) & (~is_special)
L_vis = is_vision.sum(dim=1).float()
L_txt = is_text.sum(dim=1).float()
L_tot = am.sum(dim=1).float().clamp(min=1.0)
r_vis = L_vis / L_tot
r_txt = L_txt / L_tot
# 类型 one-hot
is_I = ((L_vis > 0) & (L_txt == 0)).float()
is_T = ((L_txt > 0) & (L_vis == 0)).float()
is_IT = ((L_txt > 0) & (L_vis > 0)).float()
feats = torch.stack([s1, s2, margin, H, sum_p2, L_txt, L_vis, L_tot, r_txt, r_vis, is_I, is_T, is_IT], dim=1)
return feats # [B,13]
@torch.no_grad()
def build_phaseA_features_local(
reps_mid_t: torch.Tensor, # [B,D]
cand_mid_t: torch.Tensor, # [Nc,D]
am_mid: torch.Tensor, # [B,L]
input_ids: torch.Tensor, # [B,L]
cfg,
per_sample_rows: list, # list[list[int]]
topk: int = 200,
temp: float = 0.05,
):
device = reps_mid_t.device
B = reps_mid_t.size(0)
s1_list, s2_list, H_list, sum_p2_list = [], [], [], []
for b in range(B):
rows = per_sample_rows[b]
if len(rows) == 0:
s1_list.append(torch.tensor(0.0, device=device))
s2_list.append(torch.tensor(0.0, device=device))
H_list.append(torch.tensor(1.0, device=device))
sum_p2_list.append(torch.tensor(0.0, device=device))
continue
cmat = cand_mid_t[rows]
sv = (reps_mid_t[b:b+1] @ cmat.T)[0]
k = min(topk, sv.size(0))
vals, _ = torch.topk(sv, k=k, dim=0)
s1_list.append(vals[0])
s2_list.append(vals[1] if k >= 2 else torch.tensor(0.0, device=device, dtype=vals.dtype))
p = torch.softmax(vals / max(temp, 1e-6), dim=0)
H_list.append((-(p * (torch.log(p + 1e-12))).sum() / math.log(max(k, 1))))
sum_p2_list.append((p**2).sum())
s1 = torch.stack(s1_list)
s2 = torch.stack(s2_list)
H = torch.stack(H_list)
sum_p2 = torch.stack(sum_p2_list)
margin = s1 - s2
am = am_mid.to(torch.bool)
iid = input_ids
image_token_id = getattr(cfg, "image_token_id", None)
video_token_id = getattr(cfg, "video_token_id", None)
bos_id = getattr(cfg, "bos_token_id", None)
eos_id = getattr(cfg, "eos_token_id", None)
pad_id = getattr(cfg, "pad_token_id", None)
is_image = (iid == image_token_id) if (image_token_id is not None and image_token_id >= 0) else torch.zeros_like(iid, dtype=torch.bool)
is_video = (iid == video_token_id) if (video_token_id is not None and video_token_id >= 0) else torch.zeros_like(iid, dtype=torch.bool)
is_vision = (is_image | is_video) & am
is_special = torch.zeros_like(iid, dtype=torch.bool)
for tid in [bos_id, eos_id, pad_id]:
if tid is not None and tid >= 0:
is_special |= (iid == tid)
is_text = am & (~is_vision) & (~is_special)
L_vis = is_vision.sum(dim=1).float()
L_txt = is_text.sum(dim=1).float()
L_tot = am.sum(dim=1).float().clamp(min=1.0)
r_vis = L_vis / L_tot
r_txt = L_txt / L_tot
is_I = ((L_vis > 0) & (L_txt == 0)).float()
is_T = ((L_txt > 0) & (L_vis == 0)).float()
is_IT = ((L_txt > 0) & (L_vis > 0)).float()
feats = torch.stack([s1, s2, margin, H, sum_p2, L_txt, L_vis, L_tot, r_txt, r_vis, is_I, is_T, is_IT], dim=1)
return feats # [B,13]
# ---------- Label(y_exit) ----------
def compute_label_top1_equal_global(scores_mid: np.ndarray, scores_last: np.ndarray) -> np.ndarray:
top1_mid = scores_mid.argmax(axis=1)
top1_last = scores_last.argmax(axis=1)
return (top1_mid == top1_last).astype(np.int32)
def compute_label_top1_equal_local(scores_mid_list, scores_last_list):
y = []
for sv_mid, sv_last in zip(scores_mid_list, scores_last_list):
if sv_mid.size == 0 or sv_last.size == 0:
y.append(0)
else:
y.append(int(int(sv_mid.argmax()) == int(sv_last.argmax())))
return np.array(y, dtype=np.int32)
# ---------------- Main dump ----------------
def main():
# DDP init
if "RANK" in os.environ and dist.is_available() and not dist.is_initialized():
dist.init_process_group(backend="nccl", timeout=datetime.timedelta(minutes=60))
local_rank = dist.get_rank() if dist.is_initialized() else 0
parser = HfArgumentParser((ModelArguments, DataArguments, TrainingArguments))
model_args, data_args, training_args = parser.parse_args_into_dataclasses()
os.makedirs(data_args.encode_output_path, exist_ok=True)
# Load model
hf_config = AutoConfig.from_pretrained(model_args.model_name, trust_remote_code=True)
if not getattr(model_args, "model_backbone", None):
model_backbone = get_backbone_name(hf_config=hf_config, model_type=model_args.model_type)
setattr(model_args, 'model_backbone', model_backbone)
setattr(training_args, 'model_backbone', model_backbone)
if local_rank == 0:
processor = load_processor(model_args, data_args)
model = MMEBModel.load(model_args, is_trainable=False, processor=processor)
if dist.is_initialized():
dist.barrier()
if local_rank != 0:
processor = load_processor(model_args, data_args)
time.sleep(random.randint(2 * local_rank, 3 * local_rank))
model = MMEBModel.load(model_args, is_trainable=False, processor=processor)
model.eval()
model = model.to(training_args.device, dtype=torch.bfloat16)
# Configs
ee_layer = int(os.environ.get("EE_LAYER", os.environ.get("AOP_LAYER", "12")))
feat_topk = int(os.environ.get("EE_FEAT_TOPK", "200"))
force_no_aop = os.environ.get("DUMP_EXIT_NO_AOP", "1").strip().lower() in {"1", "true", "yes", "on"}
# 切分比例
TRAIN_RATIO = 0.1
VAL_RATIO = 0.1
# Test ratio = 1 - 0.7 - 0.15 = 0.15
with open(data_args.dataset_config, 'r', encoding='utf-8') as yf:
dataset_configs = yaml.safe_load(yf)
for dataset_name, task_cfg in dataset_configs.items():
if dist.is_initialized(): dist.barrier()
print_master(f"\n[DUMP] Processing {dataset_name} ...")
if data_args.data_basedir:
for key in ["image_root", "video_root", "frame_root", "clip_root", "data_path"]:
if task_cfg.get(key):
task_cfg[key] = os.path.join(data_args.data_basedir, task_cfg[key])
# 1. 加载全量数据
full_qry, corpus = AutoEvalPairDataset.instantiate(model_args=model_args, data_args=data_args, **task_cfg)
full_cand = generate_cand_dataset(full_qry, corpus)
# 2. [CRITICAL] 生成切分索引 & 全局索引映射
# 这一步确保我们在 Dump 时知道每个样本在全量数据集中的绝对位置 (Global Index)
total_len = len(full_qry)
all_indices = np.arange(total_len)
# 切分逻辑
train_idxs, temp_idxs = train_test_split(
all_indices, train_size=TRAIN_RATIO, random_state=42, shuffle=True
)
val_relative_ratio = VAL_RATIO / (1.0 - TRAIN_RATIO)
val_idxs, test_idxs = train_test_split(
temp_idxs, train_size=val_relative_ratio, random_state=42, shuffle=True
)
print_master(f"[DUMP] Split sizes -> Train: {len(train_idxs)}, Val: {len(val_idxs)}, Test: {len(test_idxs)}")
# 构造 Splits 字典,包含 Subset 和对应的 Global Indices
splits = {
"train": {"ds": full_qry.select(train_idxs), "indices": train_idxs},
"val": {"ds": full_qry.select(val_idxs), "indices": val_idxs},
"test": {"ds": full_qry.select(test_idxs), "indices": test_idxs}
}
# 3. 准备 Candidates
cand_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "cand")
cand_loader = DataLoader(
full_cand, batch_size=training_args.per_device_eval_batch_size,
collate_fn=cand_collator, num_workers=training_args.dataloader_num_workers
)
cand_mid_np, cand_last_np, cand_ids = encode_candidates_both_layers(model, cand_loader, training_args, mid_layer=ee_layer)
cand_id2row = {str(cid): i for i, cid in enumerate(cand_ids)}
device = training_args.device
cand_mid_t = torch.from_numpy(cand_mid_np).to(device=device, dtype=torch.bfloat16)
cand_last_t = None
# 4. 遍历 Split Dump
sum_feat, sum2_feat, n_feat = None, None, 0
scaler_path = os.path.join(data_args.encode_output_path, f"{dataset_name}_phaseA_scaler.json")
for split_name, split_info in splits.items():
qry_dataset = split_info["ds"]
global_indices = split_info["indices"]
if len(qry_dataset) == 0: continue
# [DDP Sharding] 同时切分 Dataset 和 Indices
if dist.is_initialized():
world_size = dist.get_world_size()
per_rank = len(qry_dataset) // world_size
start_idx = local_rank * per_rank
end_idx = start_idx + per_rank
if start_idx >= len(qry_dataset):
local_dataset = qry_dataset.select([])
local_indices = []
else:
local_dataset = qry_dataset.select(range(start_idx, end_idx))
local_indices = global_indices[start_idx : end_idx]
else:
local_dataset = qry_dataset
local_indices = global_indices
qry_collator = MultimodalEvalDataCollator(processor, model_args, data_args, "qry")
qry_loader = DataLoader(
local_dataset,
batch_size=training_args.per_device_eval_batch_size,
collate_fn=qry_collator,
num_workers=training_args.dataloader_num_workers,
shuffle=False # 必须 False 才能对齐 local_indices
)
feat_out_path_rank = os.path.join(data_args.encode_output_path, f"{dataset_name}_{split_name}_features.jsonl.rank{local_rank}")
print_master(f" -> Dump {split_name} features to {feat_out_path_rank} ...")
# 用于追踪当前 Batch 在 local_indices 中的游标
cursor = 0
with open(feat_out_path_rank, "w", encoding="utf-8") as fout:
for inputs, infos in tqdm(qry_loader, desc=f"[{split_name.upper()}]", disable=(local_rank!=0)):
inputs = batch_to_device(inputs, device)
B = inputs["input_ids"].size(0)
# [CRITICAL] 获取当前 Batch 对应的 Global ID
batch_global_ids = local_indices[cursor : cursor + B]
cursor += B
# --- A. Forward Mid ---
aop_cfg_cur = getattr(model.encoder, "aop_prune_config", None)
orig_aop = None
if force_no_aop and isinstance(aop_cfg_cur, dict):
orig_aop = dict(aop_cfg_cur)
aop_off = dict(aop_cfg_cur)
aop_off["enabled"] = False
setattr(model.encoder, "aop_prune_config", aop_off)
with torch.no_grad(), torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=True):
out_mid = model.encoder(
**inputs, return_dict=True, output_hidden_states=False,
stop_at_layer=int(ee_layer), compute_lm_head=False,
return_intermediate_state=True
)
if orig_aop is not None: setattr(model.encoder, "aop_prune_config", orig_aop)
# [FIX] Boolean tensor fix
hs_mid = getattr(out_mid, "last_hidden_state", None)
if hs_mid is None: hs_mid = out_mid.hidden_states[-1]
am_mid = getattr(out_mid, "attention_mask", None)
if am_mid is None: am_mid = inputs.get("attention_mask")
if hasattr(am_mid, "device") and am_mid.device != hs_mid.device: am_mid = am_mid.to(hs_mid.device)
reps_mid_t = model._pooling(hs_mid, am_mid).detach().to(device=device, dtype=torch.bfloat16)
# --- B. Build Feats ---
rank_global = task_cfg.get("eval_type", "global") == "global"
if rank_global:
feats_t = build_phaseA_features_global(reps_mid_t, cand_mid_t, am_mid, inputs["input_ids"], model.encoder.config, topk=feat_topk)
else:
rows_list = []
for b_idx in range(B):
cand_local = infos[b_idx]["cand_names"]
rows = [cand_id2row.get(str(cid), -1) for cid in cand_local]
rows = [r for r in rows if r >= 0]
rows_list.append(rows)
feats_t = build_phaseA_features_local(reps_mid_t, cand_mid_t, am_mid, inputs["input_ids"], model.encoder.config, rows_list, topk=feat_topk)
feats_np = feats_t.detach().float().cpu().numpy()
# --- C. Forward Last ---
interm = getattr(out_mid, "intermediate_state", None)
resume_state = {
"hidden_states": interm["hidden_states"].detach(),
"attention_mask": interm["attention_mask"].detach(),
"position_ids": interm["position_ids"].detach(),
"vision_mask": interm.get("vision_mask"),
"text_mask": interm.get("text_mask"),
"next_layer_idx": int(interm["next_layer_idx"])
}
aop_cfg_cur = getattr(model.encoder, "aop_prune_config", None)
orig_aop2 = None
if force_no_aop and isinstance(aop_cfg_cur, dict):
orig_aop2 = dict(aop_cfg_cur)
aop_off2 = dict(aop_cfg_cur)
aop_off2["enabled"] = False
setattr(model.encoder, "aop_prune_config", aop_off2)
with torch.no_grad(), torch.autocast(device_type="cuda", dtype=torch.bfloat16, enabled=True):
out_last = model.encoder(
return_dict=True, output_hidden_states=False, stop_at_layer=None,
resume_state=resume_state, compute_lm_head=False
)
if orig_aop2 is not None: setattr(model.encoder, "aop_prune_config", orig_aop2)
# [FIX] Boolean tensor fix
hs_last = getattr(out_last, "last_hidden_state", None)
if hs_last is None: hs_last = out_last.hidden_states[-1]
am_last = getattr(out_last, "attention_mask", None)
if am_last is None: am_last = resume_state["attention_mask"]
if hasattr(am_last, "device") and am_last.device != hs_last.device: am_last = am_last.to(hs_last.device)
reps_last_t = model._pooling(hs_last, am_last).detach().to(device=device, dtype=torch.bfloat16)
# --- Label Logic ---
if rank_global:
if cand_last_t is None: cand_last_t = torch.from_numpy(cand_last_np).to(device=device, dtype=torch.bfloat16)
sim_mid = (reps_mid_t @ cand_mid_t.T).detach().float().cpu().numpy()
sim_last = (reps_last_t @ cand_last_t.T).detach().float().cpu().numpy()
y = compute_label_top1_equal_global(sim_mid, sim_last)
else:
y_list = []
for b_idx in range(B):
cand_local = infos[b_idx]["cand_names"]
rows = [cand_id2row.get(str(cid), -1) for cid in cand_local]
rows = [r for r in rows if r >= 0]
if not rows:
y_list.append(0)
continue
c_mid = cand_mid_t[rows]
if cand_last_t is None: cand_last_t = torch.from_numpy(cand_last_np).to(device=device, dtype=torch.bfloat16)
c_last = cand_last_t[rows]
sv_mid = (reps_mid_t[b_idx:b_idx+1] @ c_mid.T)[0].detach().float().cpu().numpy()
sv_last = (reps_last_t[b_idx:b_idx+1] @ c_last.T)[0].detach().float().cpu().numpy()
y_list.append(int(int(sv_mid.argmax()) == int(sv_last.argmax())))
y = np.array(y_list, dtype=np.int32)
# --- D. Write ---
# Update Scaler Stats (Train Only)
if split_name == "train":
if sum_feat is None:
sum_feat = feats_np.sum(axis=0)
sum2_feat = (feats_np**2).sum(axis=0)
else:
sum_feat += feats_np.sum(axis=0)
sum2_feat += (feats_np**2).sum(axis=0)
n_feat += feats_np.shape[0]
L_txt = feats_np[:, 5]
L_vis = feats_np[:, 6]
types = np.where((L_vis > 0) & (L_txt == 0), "I", np.where((L_txt > 0) & (L_vis == 0), "T", "IT"))
for b_idx in range(B):
row = {
"dataset": dataset_name,
"split": split_name,
"qid": int(batch_global_ids[b_idx]), # Global Index as QID
"type": str(types[b_idx]),
"feats": feats_np[b_idx].tolist(),
"y_exit": int(y[b_idx]),
}
fout.write(json.dumps(row, ensure_ascii=False) + "\n")
# 5. Save Scaler
if dist.is_initialized():
dist.barrier()
stats_vec = torch.tensor(
np.concatenate([sum_feat, sum2_feat, [n_feat]]) if n_feat > 0 else np.zeros(13*2+1),
device=device, dtype=torch.float64
)
dist.all_reduce(stats_vec, op=dist.ReduceOp.SUM)
sum_feat_all = stats_vec[:13].cpu().numpy()
sum2_feat_all = stats_vec[13:26].cpu().numpy()
n_feat_all = stats_vec[26].item()
else:
sum_feat_all = sum_feat
sum2_feat_all = sum2_feat
n_feat_all = n_feat
if local_rank == 0 and n_feat_all > 0:
mean = (sum_feat_all / n_feat_all).tolist()
var = (sum2_feat_all / n_feat_all - (sum_feat_all / n_feat_all) ** 2)
std = [float(max(1e-6, math.sqrt(max(0.0, v)))) for v in var.tolist()]
with open(scaler_path, "w", encoding="utf-8") as f:
json.dump({"mean": mean, "std": std, "in_dim": len(mean), "n_samples": n_feat_all, "dataset": dataset_name}, f, indent=2)
print_master(f"[DUMP] {dataset_name} Scaler saved -> {scaler_path}")
if dist.is_initialized(): dist.barrier()
if __name__ == "__main__":
main() |