File size: 10,667 Bytes
b2ac71b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
import os
import dataclasses
import torch
import transformers
from transformers import Trainer, TrainingArguments, TrainerCallback
from peft import LoraConfig, get_peft_model, TaskType
from huggingface_hub import HfApi, login
import wandb
from dotenv import load_dotenv
from config import TrainConfig, ModelConfig
from model import MultiModalModel
from data import AudioTextDataset, DataCollator


class SamplePredictionCallback(TrainerCallback):
    """Every N steps, print ground-truth vs model-predicted transcript for a few samples."""

    def __init__(self, tokenizer, data_collator, train_dataset, sample_every_n_steps: int = 100, num_samples: int = 2, prompt: str = "Transcribe the following audio:"):
        self.tokenizer = tokenizer
        self.data_collator = data_collator
        self.train_dataset = train_dataset
        self.sample_every_n_steps = sample_every_n_steps
        self.num_samples = num_samples
        self.prompt = prompt
    def on_log(self, args, state, control, model=None, **kwargs):
        if state.global_step == 0 or state.global_step % self.sample_every_n_steps != 0:
            return
        if model is None:
            return
        model.eval()
        device = next(model.parameters()).device
        try:
            indices = [i % len(self.train_dataset) for i in range(self.num_samples)]
            batch = self.data_collator([self.train_dataset[i] for i in indices])
            audio_values = batch["audio_values"].to(device)
            labels_batch = batch["labels"]
            continuations = batch.get("continuation", [""] * audio_values.size(0))
            prompt_ids = self.tokenizer(self.prompt, return_tensors="pt", add_special_tokens=True).input_ids.to(device)
            prompt_ids = prompt_ids.expand(audio_values.size(0), -1)
            with torch.no_grad():
                gen_ids = model.generate(
                    input_ids=prompt_ids,
                    audio_values=audio_values,
                    max_new_tokens=120,
                    do_sample=False,
                    pad_token_id=self.tokenizer.pad_token_id or self.tokenizer.eos_token_id,
                )
            prompt_len = prompt_ids.size(1)
            
            # Create a wandb Table
            columns = ["Step", "Audio Index", "Ground Truth", "Prediction", "Continuation"]
            table = wandb.Table(columns=columns)
            
            print(f"\n[WandB] Logging sample predictions at step {state.global_step}")
            
            for i in range(audio_values.size(0)):
                gt_tokens = [t for t in labels_batch[i].tolist() if t != -100]
                gt_text = self.tokenizer.decode(gt_tokens, skip_special_tokens=True).strip()
                pred_text = self.tokenizer.decode(gen_ids[i][prompt_len:], skip_special_tokens=True).strip()
                
                cont_ref = continuations[i] if i < len(continuations) else ""
                
                # Add row to table
                table.add_data(state.global_step, i, gt_text, pred_text, cont_ref)
                
            # Log the table to wandb
            if wandb.run is not None:
                wandb.log({"sample_predictions": table}, step=state.global_step)
            else:
                print("Warning: WandB run not active, skipping logging.")

        except Exception as e:
            print(f"[SamplePredictionCallback] Error: {e}\n")
        finally:
            model.train()


import shutil
import glob
from transformers.trainer_utils import get_last_checkpoint

class AggressiveDeleteCallback(TrainerCallback):
    """
    Deletes ALL existing checkpoints in output_dir *before* saving a new one
    to ensure we don't run out of disk space. 
    Only keeps the one we are currently training on (in memory) effectively,
    but on disk we want 0 checkpoints just before save.
    
    WARNING: If save fails, we have NO checkpoints on disk. Risk accepted by user.
    """
    def __init__(self, output_dir):
        self.output_dir = output_dir

    def on_step_end(self, args, state, control, **kwargs):
        # Check if we are about to save
        # Trainer checks: if save_strategy == "steps" and global_step % save_steps == 0
        if args.save_strategy == "steps" and args.save_steps > 0:
            if state.global_step > 0 and state.global_step % args.save_steps == 0:
                # We are about to save. Delete old checkpoints.
                print(f"\n[AggressiveDeleteCallback] Step {state.global_step}: Deleting old checkpoints to free space before saving...")
                
                # Verify we aren't deleting something we just wrote (unlikely in on_step_end, save happens after)
                # But we might be resuming.
                
                ckpts = glob.glob(os.path.join(self.output_dir, "checkpoint-*"))
                for ckpt in ckpts:
                    try:
                        shutil.rmtree(ckpt)
                        print(f"  Deleted {ckpt}")
                    except Exception as e:
                        print(f"  Failed to delete {ckpt}: {e}")

def train():
    # Load environment variables
    load_dotenv()

    # Load Configs
    train_config = TrainConfig()
    model_config = ModelConfig()
    
    # Initialize WandB
    wandb.init(
        project=train_config.wandb_project,
        entity=train_config.wandb_entity,
        name=train_config.wandb_run_name,
        config=dataclasses.asdict(train_config),
    )

    
    # Initialize Tokenizer & Processor
    tokenizer = transformers.AutoTokenizer.from_pretrained(model_config.text_model_id)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
        
    processor = transformers.AutoProcessor.from_pretrained(model_config.audio_model_id)
    
    # Initialize Model
    model = MultiModalModel(model_config)
    
    # Apply LoRA if requested
    if train_config.use_lora:
        peft_config = LoraConfig(
            task_type=TaskType.CAUSAL_LM, 
            inference_mode=False, 
            r=train_config.lora_r, 
            lora_alpha=train_config.lora_alpha, 
            lora_dropout=train_config.lora_dropout,
            target_modules=["q_proj", "v_proj"]
        )
        model.llm = get_peft_model(model.llm, peft_config)
        model.llm.print_trainable_parameters()
        
    # Dataset
    train_dataset = AudioTextDataset(train_config, processor, model_config, tokenizer)
    data_collator = DataCollator(processor, tokenizer)
    
    # Training Arguments (tuned for A100 80GB: bf16, larger batch, fast dataloader)
    training_args = TrainingArguments(
        output_dir=train_config.output_dir,
        per_device_train_batch_size=train_config.batch_size,
        gradient_accumulation_steps=train_config.accum_steps,
        learning_rate=train_config.learning_rate,
        lr_scheduler_type=train_config.lr_scheduler_type,
        num_train_epochs=train_config.num_epochs,
        max_steps=train_config.max_steps,
        bf16=train_config.use_bf16,
        gradient_checkpointing=train_config.gradient_checkpointing,
        dataloader_num_workers=train_config.dataloader_num_workers,
        dataloader_pin_memory=train_config.dataloader_pin_memory,
        logging_steps=train_config.log_steps,
        logging_first_step=True,
        logging_nan_inf_filter=True,
        save_steps=train_config.save_steps,
        save_total_limit=train_config.save_total_limit,
        eval_strategy="no",  # change if val set provided
        remove_unused_columns=False,  # Important because we have custom forward signature
        report_to="wandb",
        log_level="info",
        log_level_replica="info",
    )

    sample_callback = SamplePredictionCallback(
        tokenizer=tokenizer,
        data_collator=data_collator,
        train_dataset=train_dataset,
        sample_every_n_steps=train_config.sample_pred_every_steps,
        num_samples=2,
        prompt="Transcribe the following audio:",
    )
    
    aggressive_delete_callback = AggressiveDeleteCallback(train_config.output_dir)

    trainer = Trainer(
        model=model,
        args=training_args,
        train_dataset=train_dataset,
        data_collator=data_collator,
        callbacks=[sample_callback, aggressive_delete_callback],
    )

    total_steps = train_config.max_steps
    print(f"\n>>> Training: max_steps={total_steps}, batch_size={train_config.batch_size}, "
          f"grad_accum={train_config.accum_steps} (effective batch={train_config.batch_size * train_config.accum_steps})")
    print(f">>> Sample predictions (GT vs predicted transcript) every {train_config.sample_pred_every_steps} steps.\n")

    # Resume from checkpoint if exists
    last_checkpoint = get_last_checkpoint(train_config.output_dir)
    if last_checkpoint is not None:
        print(f">>> Resuming from checkpoint: {last_checkpoint}")
        trainer.train(resume_from_checkpoint=last_checkpoint)
    else:
        trainer.train()
    
    # Save
    trainer.save_model(train_config.output_dir)
    tokenizer.save_pretrained(train_config.output_dir)
    processor.save_pretrained(train_config.output_dir)

    # Push to Hub
    if train_config.push_to_hub:
        print(f"\n>>> Pushing model to Hugging Face Hub: {train_config.hub_model_id}")
        if train_config.hub_token:
            login(token=train_config.hub_token)
        
        api = HfApi()
        
        # Create repo if needed
        # private=True by default for safety, user can adjust
        try:
            api.create_repo(repo_id=train_config.hub_model_id, private=train_config.hub_private_repo, exist_ok=True)
        except Exception as e:
            print(f"Warning: Could not create repo {train_config.hub_model_id}. Error: {e}")
        
        # Upload model folder
        try:
            api.upload_folder(
                folder_path=train_config.output_dir,
                repo_id=train_config.hub_model_id,
                repo_type="model",
            )
            
            # Upload code files to ensure custom model works
            for file in ["model.py", "config.py", "data.py", "inference.py"]:
                 if os.path.exists(file):
                      api.upload_file(
                           path_or_fileobj=file,
                           path_in_repo=file,
                           repo_id=train_config.hub_model_id,
                           repo_type="model",
                      )

            print(f">>> Successfully pushed to {train_config.hub_model_id}")
        except Exception as e:
            print(f"Error pushing to hub: {e}")

if __name__ == "__main__":
    train()