File size: 10,667 Bytes
b2ac71b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 |
import os
import dataclasses
import torch
import transformers
from transformers import Trainer, TrainingArguments, TrainerCallback
from peft import LoraConfig, get_peft_model, TaskType
from huggingface_hub import HfApi, login
import wandb
from dotenv import load_dotenv
from config import TrainConfig, ModelConfig
from model import MultiModalModel
from data import AudioTextDataset, DataCollator
class SamplePredictionCallback(TrainerCallback):
"""Every N steps, print ground-truth vs model-predicted transcript for a few samples."""
def __init__(self, tokenizer, data_collator, train_dataset, sample_every_n_steps: int = 100, num_samples: int = 2, prompt: str = "Transcribe the following audio:"):
self.tokenizer = tokenizer
self.data_collator = data_collator
self.train_dataset = train_dataset
self.sample_every_n_steps = sample_every_n_steps
self.num_samples = num_samples
self.prompt = prompt
def on_log(self, args, state, control, model=None, **kwargs):
if state.global_step == 0 or state.global_step % self.sample_every_n_steps != 0:
return
if model is None:
return
model.eval()
device = next(model.parameters()).device
try:
indices = [i % len(self.train_dataset) for i in range(self.num_samples)]
batch = self.data_collator([self.train_dataset[i] for i in indices])
audio_values = batch["audio_values"].to(device)
labels_batch = batch["labels"]
continuations = batch.get("continuation", [""] * audio_values.size(0))
prompt_ids = self.tokenizer(self.prompt, return_tensors="pt", add_special_tokens=True).input_ids.to(device)
prompt_ids = prompt_ids.expand(audio_values.size(0), -1)
with torch.no_grad():
gen_ids = model.generate(
input_ids=prompt_ids,
audio_values=audio_values,
max_new_tokens=120,
do_sample=False,
pad_token_id=self.tokenizer.pad_token_id or self.tokenizer.eos_token_id,
)
prompt_len = prompt_ids.size(1)
# Create a wandb Table
columns = ["Step", "Audio Index", "Ground Truth", "Prediction", "Continuation"]
table = wandb.Table(columns=columns)
print(f"\n[WandB] Logging sample predictions at step {state.global_step}")
for i in range(audio_values.size(0)):
gt_tokens = [t for t in labels_batch[i].tolist() if t != -100]
gt_text = self.tokenizer.decode(gt_tokens, skip_special_tokens=True).strip()
pred_text = self.tokenizer.decode(gen_ids[i][prompt_len:], skip_special_tokens=True).strip()
cont_ref = continuations[i] if i < len(continuations) else ""
# Add row to table
table.add_data(state.global_step, i, gt_text, pred_text, cont_ref)
# Log the table to wandb
if wandb.run is not None:
wandb.log({"sample_predictions": table}, step=state.global_step)
else:
print("Warning: WandB run not active, skipping logging.")
except Exception as e:
print(f"[SamplePredictionCallback] Error: {e}\n")
finally:
model.train()
import shutil
import glob
from transformers.trainer_utils import get_last_checkpoint
class AggressiveDeleteCallback(TrainerCallback):
"""
Deletes ALL existing checkpoints in output_dir *before* saving a new one
to ensure we don't run out of disk space.
Only keeps the one we are currently training on (in memory) effectively,
but on disk we want 0 checkpoints just before save.
WARNING: If save fails, we have NO checkpoints on disk. Risk accepted by user.
"""
def __init__(self, output_dir):
self.output_dir = output_dir
def on_step_end(self, args, state, control, **kwargs):
# Check if we are about to save
# Trainer checks: if save_strategy == "steps" and global_step % save_steps == 0
if args.save_strategy == "steps" and args.save_steps > 0:
if state.global_step > 0 and state.global_step % args.save_steps == 0:
# We are about to save. Delete old checkpoints.
print(f"\n[AggressiveDeleteCallback] Step {state.global_step}: Deleting old checkpoints to free space before saving...")
# Verify we aren't deleting something we just wrote (unlikely in on_step_end, save happens after)
# But we might be resuming.
ckpts = glob.glob(os.path.join(self.output_dir, "checkpoint-*"))
for ckpt in ckpts:
try:
shutil.rmtree(ckpt)
print(f" Deleted {ckpt}")
except Exception as e:
print(f" Failed to delete {ckpt}: {e}")
def train():
# Load environment variables
load_dotenv()
# Load Configs
train_config = TrainConfig()
model_config = ModelConfig()
# Initialize WandB
wandb.init(
project=train_config.wandb_project,
entity=train_config.wandb_entity,
name=train_config.wandb_run_name,
config=dataclasses.asdict(train_config),
)
# Initialize Tokenizer & Processor
tokenizer = transformers.AutoTokenizer.from_pretrained(model_config.text_model_id)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
processor = transformers.AutoProcessor.from_pretrained(model_config.audio_model_id)
# Initialize Model
model = MultiModalModel(model_config)
# Apply LoRA if requested
if train_config.use_lora:
peft_config = LoraConfig(
task_type=TaskType.CAUSAL_LM,
inference_mode=False,
r=train_config.lora_r,
lora_alpha=train_config.lora_alpha,
lora_dropout=train_config.lora_dropout,
target_modules=["q_proj", "v_proj"]
)
model.llm = get_peft_model(model.llm, peft_config)
model.llm.print_trainable_parameters()
# Dataset
train_dataset = AudioTextDataset(train_config, processor, model_config, tokenizer)
data_collator = DataCollator(processor, tokenizer)
# Training Arguments (tuned for A100 80GB: bf16, larger batch, fast dataloader)
training_args = TrainingArguments(
output_dir=train_config.output_dir,
per_device_train_batch_size=train_config.batch_size,
gradient_accumulation_steps=train_config.accum_steps,
learning_rate=train_config.learning_rate,
lr_scheduler_type=train_config.lr_scheduler_type,
num_train_epochs=train_config.num_epochs,
max_steps=train_config.max_steps,
bf16=train_config.use_bf16,
gradient_checkpointing=train_config.gradient_checkpointing,
dataloader_num_workers=train_config.dataloader_num_workers,
dataloader_pin_memory=train_config.dataloader_pin_memory,
logging_steps=train_config.log_steps,
logging_first_step=True,
logging_nan_inf_filter=True,
save_steps=train_config.save_steps,
save_total_limit=train_config.save_total_limit,
eval_strategy="no", # change if val set provided
remove_unused_columns=False, # Important because we have custom forward signature
report_to="wandb",
log_level="info",
log_level_replica="info",
)
sample_callback = SamplePredictionCallback(
tokenizer=tokenizer,
data_collator=data_collator,
train_dataset=train_dataset,
sample_every_n_steps=train_config.sample_pred_every_steps,
num_samples=2,
prompt="Transcribe the following audio:",
)
aggressive_delete_callback = AggressiveDeleteCallback(train_config.output_dir)
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
data_collator=data_collator,
callbacks=[sample_callback, aggressive_delete_callback],
)
total_steps = train_config.max_steps
print(f"\n>>> Training: max_steps={total_steps}, batch_size={train_config.batch_size}, "
f"grad_accum={train_config.accum_steps} (effective batch={train_config.batch_size * train_config.accum_steps})")
print(f">>> Sample predictions (GT vs predicted transcript) every {train_config.sample_pred_every_steps} steps.\n")
# Resume from checkpoint if exists
last_checkpoint = get_last_checkpoint(train_config.output_dir)
if last_checkpoint is not None:
print(f">>> Resuming from checkpoint: {last_checkpoint}")
trainer.train(resume_from_checkpoint=last_checkpoint)
else:
trainer.train()
# Save
trainer.save_model(train_config.output_dir)
tokenizer.save_pretrained(train_config.output_dir)
processor.save_pretrained(train_config.output_dir)
# Push to Hub
if train_config.push_to_hub:
print(f"\n>>> Pushing model to Hugging Face Hub: {train_config.hub_model_id}")
if train_config.hub_token:
login(token=train_config.hub_token)
api = HfApi()
# Create repo if needed
# private=True by default for safety, user can adjust
try:
api.create_repo(repo_id=train_config.hub_model_id, private=train_config.hub_private_repo, exist_ok=True)
except Exception as e:
print(f"Warning: Could not create repo {train_config.hub_model_id}. Error: {e}")
# Upload model folder
try:
api.upload_folder(
folder_path=train_config.output_dir,
repo_id=train_config.hub_model_id,
repo_type="model",
)
# Upload code files to ensure custom model works
for file in ["model.py", "config.py", "data.py", "inference.py"]:
if os.path.exists(file):
api.upload_file(
path_or_fileobj=file,
path_in_repo=file,
repo_id=train_config.hub_model_id,
repo_type="model",
)
print(f">>> Successfully pushed to {train_config.hub_model_id}")
except Exception as e:
print(f"Error pushing to hub: {e}")
if __name__ == "__main__":
train()
|