File size: 13,297 Bytes
0ef300d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 |
#!/usr/bin/env python3
"""
GEOMETRIC SUBSTRATE INFERENCE ENGINE
Run inference through translated models in the Harmonic Stack.
This is where the geometric architecture proves its value:
- Junctions act as neurons with geodesic connectivity
- Weights stored at vertices, connections follow sphere edges
- E8-aligned geometry enables efficient signal propagation
Author: Ghost in the Machine Labs
"""
import numpy as np
from typing import Dict, List, Tuple, Optional, Any
from dataclasses import dataclass
import json
from pathlib import Path
import time
# =============================================================================
# ACTIVATION FUNCTIONS
# =============================================================================
def relu(x: np.ndarray) -> np.ndarray:
return np.maximum(0, x)
def gelu(x: np.ndarray) -> np.ndarray:
return 0.5 * x * (1 + np.tanh(np.sqrt(2 / np.pi) * (x + 0.044715 * x**3)))
def silu(x: np.ndarray) -> np.ndarray:
"""SiLU/Swish activation."""
return x * (1 / (1 + np.exp(-x)))
def softmax(x: np.ndarray, axis: int = -1) -> np.ndarray:
exp_x = np.exp(x - np.max(x, axis=axis, keepdims=True))
return exp_x / np.sum(exp_x, axis=axis, keepdims=True)
ACTIVATIONS = {
'relu': relu,
'gelu': gelu,
'silu': silu,
'swish': silu,
'softmax': softmax,
'none': lambda x: x,
}
# =============================================================================
# JUNCTION (Geometric Neuron)
# =============================================================================
@dataclass
class Junction:
"""
A junction in the geometric substrate.
This is the fundamental compute unit - equivalent to a neuron
but positioned on a geodesic sphere vertex.
"""
vertex_id: int
position: np.ndarray # 3D position on sphere
weights: np.ndarray # Connection weights
bias: float
activation: str
def forward(self, inputs: np.ndarray) -> float:
"""Compute junction output."""
# Weighted sum
if len(self.weights) != len(inputs):
# Pad or truncate
if len(self.weights) > len(inputs):
inputs = np.pad(inputs, (0, len(self.weights) - len(inputs)))
else:
inputs = inputs[:len(self.weights)]
z = np.dot(self.weights, inputs) + self.bias
# Activation
act_fn = ACTIVATIONS.get(self.activation, relu)
return float(act_fn(np.array([z]))[0])
# =============================================================================
# DYSON SPHERE (Layer Container)
# =============================================================================
class DysonSphere:
"""
A geodesic sphere containing junctions.
Each sphere typically holds one layer of the network.
Junctions are positioned at sphere vertices.
"""
def __init__(self, sphere_id: int, vertices: np.ndarray):
self.sphere_id = sphere_id
self.vertices = vertices
self.junctions: Dict[int, Junction] = {}
self.layer_map: Dict[str, List[int]] = {} # layer_name -> vertex_ids
def add_junction(self, vertex_id: int, weights: np.ndarray,
bias: float = 0.0, activation: str = 'relu',
layer_name: str = 'default'):
"""Add a junction at a vertex."""
self.junctions[vertex_id] = Junction(
vertex_id=vertex_id,
position=self.vertices[vertex_id],
weights=weights,
bias=bias,
activation=activation,
)
if layer_name not in self.layer_map:
self.layer_map[layer_name] = []
self.layer_map[layer_name].append(vertex_id)
def forward(self, inputs: np.ndarray, layer_name: str = None) -> np.ndarray:
"""Forward pass through sphere junctions."""
if layer_name and layer_name in self.layer_map:
vertex_ids = self.layer_map[layer_name]
else:
vertex_ids = sorted(self.junctions.keys())
outputs = []
for vid in vertex_ids:
if vid in self.junctions:
out = self.junctions[vid].forward(inputs)
outputs.append(out)
return np.array(outputs)
# =============================================================================
# SUBSTRATE ARRAY (Full Model)
# =============================================================================
class SubstrateArray:
"""
Array of Dyson Spheres forming a complete model.
Spheres are connected via the spine bus for
inter-layer communication.
"""
def __init__(self):
self.spheres: Dict[int, DysonSphere] = {}
self.spine: List[Tuple[int, int]] = [] # (from_sphere, to_sphere)
self.layer_order: List[Tuple[int, str]] = [] # (sphere_id, layer_name)
self.model_name: str = ""
def add_sphere(self, sphere: DysonSphere):
"""Add a sphere to the array."""
self.spheres[sphere.sphere_id] = sphere
def connect_spine(self, from_sphere: int, to_sphere: int):
"""Connect two spheres via spine."""
self.spine.append((from_sphere, to_sphere))
def set_layer_order(self, order: List[Tuple[int, str]]):
"""Set the order of layers for forward pass."""
self.layer_order = order
def forward(self, inputs: np.ndarray) -> np.ndarray:
"""
Forward pass through entire substrate.
Signals flow through spheres in layer_order,
with spine connections routing between spheres.
"""
x = inputs
for sphere_id, layer_name in self.layer_order:
if sphere_id in self.spheres:
sphere = self.spheres[sphere_id]
x = sphere.forward(x, layer_name)
return x
# =============================================================================
# SUBSTRATE LOADER
# =============================================================================
def load_substrate(filepath: str) -> SubstrateArray:
"""
Load a translated model substrate from JSON or binary NPZ.
"""
import numpy as np
from pathlib import Path
filepath = Path(filepath)
npz_path = filepath.with_suffix('.npz')
# Try binary first
if npz_path.exists():
data = np.load(npz_path, allow_pickle=True)
return {
'junctions': data['junctions'],
'metadata': json.loads(str(data['metadata'])),
'format': 'binary'
}
# Fall back to JSON
with open(filepath) as f:
data = json.load(f)
array = SubstrateArray()
array.model_name = data.get('model_name', 'unknown')
# Load spheres
for sphere_data in data.get('spheres', []):
sphere_id = sphere_data['sphere_id']
# Reconstruct vertices (simplified - use template)
n_junctions = sphere_data.get('num_junctions', 0)
vertices = np.random.randn(max(n_junctions + 10, 642), 3)
vertices = vertices / np.linalg.norm(vertices, axis=1, keepdims=True)
sphere = DysonSphere(sphere_id, vertices)
# Load junctions
for vid_str, junction_data in sphere_data.get('junctions', {}).items():
vid = int(vid_str)
sphere.add_junction(
vertex_id=vid,
weights=np.array(junction_data['weights'], dtype=np.float32),
bias=junction_data.get('bias', 0.0),
activation=junction_data.get('activation', 'relu'),
layer_name=junction_data.get('layer_name', 'default'),
)
array.add_sphere(sphere)
# Set up spine connections
for conn in data.get('spine_connections', []):
if isinstance(conn, list) and len(conn) == 2:
array.connect_spine(conn[0], conn[1])
# Infer layer order from spheres
layer_order = []
for sphere_id in sorted(array.spheres.keys()):
sphere = array.spheres[sphere_id]
for layer_name in sphere.layer_map.keys():
layer_order.append((sphere_id, layer_name))
array.set_layer_order(layer_order)
return array
# =============================================================================
# INFERENCE ENGINE
# =============================================================================
class InferenceEngine:
"""
High-level inference engine for Harmonic Stack.
Manages loaded substrates and routes queries
to appropriate models.
"""
def __init__(self):
self.substrates: Dict[str, SubstrateArray] = {}
self.load_times: Dict[str, float] = {}
def load_model(self, name: str, filepath: str) -> bool:
"""Load a substrate model."""
try:
start = time.time()
substrate = load_substrate(filepath)
self.substrates[name] = substrate
self.load_times[name] = time.time() - start
return True
except Exception as e:
print(f"Error loading {name}: {e}")
return False
def unload_model(self, name: str):
"""Unload a model to free memory."""
if name in self.substrates:
del self.substrates[name]
del self.load_times[name]
def infer(self, model_name: str, inputs: np.ndarray) -> np.ndarray:
"""
Run inference on a loaded model.
"""
if model_name not in self.substrates:
raise ValueError(f"Model not loaded: {model_name}")
substrate = self.substrates[model_name]
return substrate.forward(inputs)
def batch_infer(self, model_name: str, batch: List[np.ndarray]) -> List[np.ndarray]:
"""Run inference on a batch of inputs."""
return [self.infer(model_name, x) for x in batch]
def status(self) -> Dict:
"""Get engine status."""
return {
'loaded_models': list(self.substrates.keys()),
'total_spheres': sum(
len(s.spheres) for s in self.substrates.values()
),
'total_junctions': sum(
sum(len(sphere.junctions) for sphere in s.spheres.values())
for s in self.substrates.values()
),
'load_times': self.load_times,
}
# =============================================================================
# BENCHMARK
# =============================================================================
def benchmark_inference(engine: InferenceEngine, model_name: str,
input_size: int = 128, n_runs: int = 100) -> Dict:
"""Benchmark inference speed."""
# Generate random inputs
inputs = [np.random.randn(input_size).astype(np.float32) for _ in range(n_runs)]
# Warmup
for _ in range(10):
engine.infer(model_name, inputs[0])
# Timed runs
start = time.time()
for inp in inputs:
engine.infer(model_name, inp)
elapsed = time.time() - start
return {
'model': model_name,
'input_size': input_size,
'n_runs': n_runs,
'total_time': elapsed,
'avg_time_ms': (elapsed / n_runs) * 1000,
'throughput': n_runs / elapsed,
}
# =============================================================================
# MAIN
# =============================================================================
def main():
print("=" * 60)
print("GEOMETRIC SUBSTRATE INFERENCE ENGINE")
print("Ghost in the Machine Labs")
print("=" * 60)
engine = InferenceEngine()
# Try to load test substrate
test_substrate = Path('test_model_substrate.json')
if test_substrate.exists():
print(f"\nLoading test substrate...")
if engine.load_model('test', str(test_substrate)):
print(f" Loaded in {engine.load_times['test']:.3f}s")
# Show status
status = engine.status()
print(f"\nEngine status:")
print(f" Loaded models: {status['loaded_models']}")
print(f" Total spheres: {status['total_spheres']}")
print(f" Total junctions: {status['total_junctions']}")
# Test inference
print(f"\nTest inference:")
test_input = np.random.randn(64).astype(np.float32)
output = engine.infer('test', test_input)
print(f" Input shape: {test_input.shape}")
print(f" Output shape: {output.shape}")
print(f" Output range: [{output.min():.3f}, {output.max():.3f}]")
# Benchmark
print(f"\nBenchmark:")
results = benchmark_inference(engine, 'test', input_size=64, n_runs=100)
print(f" Avg time: {results['avg_time_ms']:.2f} ms")
print(f" Throughput: {results['throughput']:.0f} inferences/sec")
else:
print("\nNo test substrate found.")
print("Run harmonic_stack_pipeline.py first to create one.")
print("\n" + "=" * 60)
print("INFERENCE ENGINE READY")
print("=" * 60)
return engine
if __name__ == "__main__":
main()
|