File size: 28,755 Bytes
330bbda |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 |
#!/usr/bin/env python3
"""
HARMONIC STACK MODEL TRANSLATION PIPELINE
Ghost in the Machine Labs
"AGI for the home, first to AGI"
This is the core pipeline for translating standard AI models
into the geometric substrate format for the Harmonic Stack.
Pipeline stages:
1. MODEL DISCOVERY - Find models on disk (safetensors, GGUF, PyTorch)
2. MODEL ANALYSIS - Analyze architecture, count params, plan allocation
3. GEOMETRIC TRANSLATION - Convert weights to junction configurations
4. SUBSTRATE WRITING - Write to Dyson Sphere array
5. VERIFICATION - Round-trip integrity check
6. REGISTRATION - Add to Harmonic Stack registry
The Harmonic Stack is the unified consciousness substrate where
all expert models coexist and can be routed to by the Router Intelligence.
Author: Joe + Claude
Date: January 25, 2026
"""
import numpy as np
from typing import Dict, List, Tuple, Optional, Any
from dataclasses import dataclass, field
from pathlib import Path
import json
import struct
import hashlib
import os
from datetime import datetime
# =============================================================================
# CONFIGURATION
# =============================================================================
# Geodesic substrate parameters
GEODESIC_FREQ = 8 # Frequency 8 = 642 vertices per sphere
VERTICES_PER_SPHERE = 10 * GEODESIC_FREQ**2 + 2 # 642
# E8 encoding parameters
E8_PRECISION_BITS = 8 # Quantize to E8 lattice
JUNCTION_OVERHEAD = 32 # Bytes overhead per junction
# Model categories
MODEL_CATEGORIES = [
'reasoning', # Chain-of-thought, logic
'math', # Arithmetic, algebra, proofs
'code', # Programming, debugging
'vision', # Image understanding
'video', # Video processing
'audio', # Speech, music
'language', # Translation, generation
'spatial', # 3D reasoning, ARC patterns
'general', # Base models
]
# =============================================================================
# MODEL FORMATS
# =============================================================================
@dataclass
class ModelFormat:
"""Supported model format."""
name: str
extensions: List[str]
loader: str
SUPPORTED_FORMATS = [
ModelFormat('safetensors', ['.safetensors'], 'load_safetensors'),
ModelFormat('gguf', ['.gguf'], 'load_gguf'),
ModelFormat('pytorch', ['.pt', '.pth', '.bin'], 'load_pytorch'),
ModelFormat('numpy', ['.npz', '.npy'], 'load_numpy'),
]
# =============================================================================
# WEIGHT LOADERS
# =============================================================================
def load_safetensors(filepath: str) -> Dict[str, np.ndarray]:
"""
Load weights from safetensors format.
"""
with open(filepath, 'rb') as f:
header_size = struct.unpack('<Q', f.read(8))[0]
header_json = f.read(header_size).decode('utf-8')
header = json.loads(header_json)
weights = {}
for name, meta in header.items():
if name == '__metadata__':
continue
dtype_str = meta['dtype']
shape = meta['shape']
offsets = meta['data_offsets']
dtype_map = {
'F32': np.float32,
'F16': np.float16,
'BF16': np.float16,
'I32': np.int32,
'I64': np.int64,
'U8': np.uint8,
}
dtype = dtype_map.get(dtype_str, np.float32)
# Read tensor data
start, end = offsets
f.seek(8 + header_size + start)
data = f.read(end - start)
tensor = np.frombuffer(data, dtype=dtype).reshape(shape)
weights[name] = tensor.astype(np.float32) # Normalize to float32
return weights
def load_gguf(filepath: str) -> Dict[str, np.ndarray]:
"""
Load weights from GGUF format.
GGUF is a binary format used by llama.cpp and similar.
"""
# GGUF magic number
GGUF_MAGIC = 0x46554747 # 'GGUF'
weights = {}
with open(filepath, 'rb') as f:
# Read magic
magic = struct.unpack('<I', f.read(4))[0]
if magic != GGUF_MAGIC:
raise ValueError(f"Invalid GGUF magic: {magic}")
# Read version
version = struct.unpack('<I', f.read(4))[0]
# Read tensor count and metadata KV count
tensor_count = struct.unpack('<Q', f.read(8))[0]
kv_count = struct.unpack('<Q', f.read(8))[0]
# Skip metadata KV pairs (simplified - full impl would parse these)
# For now, we'd need to implement full GGUF parsing
# Placeholder - full implementation needed
print(f" GGUF v{version}: {tensor_count} tensors, {kv_count} KV pairs")
print(" Note: Full GGUF parsing requires quantization support")
return weights
def load_pytorch(filepath: str) -> Dict[str, np.ndarray]:
"""
Load weights from PyTorch format.
"""
try:
import torch
state_dict = torch.load(filepath, map_location='cpu')
# Handle nested state dicts
if 'state_dict' in state_dict:
state_dict = state_dict['state_dict']
elif 'model' in state_dict:
state_dict = state_dict['model']
weights = {}
for name, tensor in state_dict.items():
weights[name] = tensor.numpy().astype(np.float32)
return weights
except ImportError:
raise ImportError("PyTorch loading requires torch library")
def load_numpy(filepath: str) -> Dict[str, np.ndarray]:
"""Load weights from numpy format."""
if filepath.endswith('.npy'):
return {'weights': np.load(filepath)}
else:
data = np.load(filepath, allow_pickle=True)
return {k: data[k].astype(np.float32) for k in data.files}
# =============================================================================
# MODEL DISCOVERY
# =============================================================================
@dataclass
class DiscoveredModel:
"""A model found on disk."""
name: str
path: str
format: str
size_bytes: int
category: str = 'unknown'
def discover_models(search_paths: List[str]) -> List[DiscoveredModel]:
"""
Discover models in given directories.
"""
models = []
for search_path in search_paths:
path = Path(search_path)
if not path.exists():
continue
for fmt in SUPPORTED_FORMATS:
for ext in fmt.extensions:
for filepath in path.rglob(f'*{ext}'):
# Infer category from path
category = 'general'
path_lower = str(filepath).lower()
for cat in MODEL_CATEGORIES:
if cat in path_lower:
category = cat
break
models.append(DiscoveredModel(
name=filepath.stem,
path=str(filepath),
format=fmt.name,
size_bytes=filepath.stat().st_size,
category=category,
))
return models
# =============================================================================
# MODEL ANALYSIS
# =============================================================================
@dataclass
class LayerInfo:
"""Information about a model layer."""
name: str
shape: Tuple[int, ...]
params: int
layer_type: str # weight, bias, embed, norm, etc.
@dataclass
class ModelAnalysis:
"""Analysis of a model's architecture."""
name: str
total_params: int
layers: List[LayerInfo]
neurons: int # Total neurons (vertices needed)
spheres_needed: int
estimated_substrate_mb: float
def analyze_weights(weights: Dict[str, np.ndarray], model_name: str) -> ModelAnalysis:
"""
Analyze model weights to plan substrate allocation.
"""
layers = []
total_params = 0
total_neurons = 0
for name, tensor in weights.items():
params = tensor.size
total_params += params
# Determine layer type
name_lower = name.lower()
if 'embed' in name_lower:
layer_type = 'embed'
elif 'norm' in name_lower or 'ln' in name_lower:
layer_type = 'norm'
elif 'bias' in name_lower:
layer_type = 'bias'
elif 'weight' in name_lower or 'kernel' in name_lower:
layer_type = 'weight'
else:
layer_type = 'param'
# Count neurons (output dimension for weights)
if len(tensor.shape) >= 2:
neurons = tensor.shape[0]
else:
neurons = tensor.shape[0]
total_neurons += neurons
layers.append(LayerInfo(
name=name,
shape=tensor.shape,
params=params,
layer_type=layer_type,
))
# Calculate spheres needed
spheres_needed = max(1, (total_neurons + VERTICES_PER_SPHERE - 1) // VERTICES_PER_SPHERE)
# Estimate substrate size (with E8 compression)
# Each junction: position (8D × 1 byte) + weights (avg 100 × 1 byte) + overhead
bytes_per_junction = 8 + 100 + JUNCTION_OVERHEAD
estimated_bytes = total_neurons * bytes_per_junction
return ModelAnalysis(
name=model_name,
total_params=total_params,
layers=layers,
neurons=total_neurons,
spheres_needed=spheres_needed,
estimated_substrate_mb=estimated_bytes / (1024 * 1024),
)
# =============================================================================
# GEOMETRIC TRANSLATION
# =============================================================================
def icosahedron_vertices() -> np.ndarray:
"""12 vertices of regular icosahedron."""
phi = (1 + np.sqrt(5)) / 2
verts = []
for s1 in [-1, 1]:
for s2 in [-1, 1]:
verts.append([0, s1, s2 * phi])
verts.append([s1, s2 * phi, 0])
verts.append([s1 * phi, 0, s2])
verts = np.array(verts, dtype=np.float32)
return verts / np.linalg.norm(verts[0])
def geodesic_sphere(freq: int = 8) -> np.ndarray:
"""Generate geodesic sphere vertices."""
ico = icosahedron_vertices()
# Icosahedron faces
faces = [
[0, 1, 2], [0, 2, 3], [0, 3, 4], [0, 4, 5], [0, 5, 1],
[1, 6, 2], [2, 6, 7], [2, 7, 3], [3, 7, 8], [3, 8, 4],
[4, 8, 9], [4, 9, 5], [5, 9, 10], [5, 10, 1], [1, 10, 6],
[6, 11, 7], [7, 11, 8], [8, 11, 9], [9, 11, 10], [10, 11, 6]
]
all_points = []
for face in faces:
v1, v2, v3 = ico[face[0]], ico[face[1]], ico[face[2]]
# Subdivide triangle
for i in range(freq + 1):
for j in range(freq + 1 - i):
k = freq - i - j
p = (i * v1 + j * v2 + k * v3) / freq
norm = np.linalg.norm(p)
if norm > 0:
p = p / norm
all_points.append(p)
# Remove duplicates
unique = []
for p in all_points:
is_dup = False
for u in unique:
if np.linalg.norm(p - u) < 1e-6:
is_dup = True
break
if not is_dup:
unique.append(p)
return np.array(unique, dtype=np.float32)
@dataclass
class Junction:
"""A junction in the geometric substrate."""
vertex_id: int
sphere_id: int
position: np.ndarray
weights: np.ndarray
bias: float
layer_name: str
neuron_idx: int
junction_type: str # EXCITATORY, INHIBITORY, MIXED
@dataclass
class DysonSphere:
"""A single geodesic sphere in the substrate."""
sphere_id: int
vertices: np.ndarray
junctions: Dict[int, Junction]
layer_assignments: Dict[str, List[int]] # layer_name -> vertex_ids
@dataclass
class SubstrateArray:
"""Array of Dyson Spheres forming the substrate."""
spheres: List[DysonSphere]
spine_connections: List[Tuple[int, int]] # (sphere_a, sphere_b)
model_name: str
total_junctions: int
def translate_to_substrate(weights: Dict[str, np.ndarray],
analysis: ModelAnalysis) -> SubstrateArray:
"""
Translate model weights to geometric substrate.
"""
# Generate geodesic template
template_vertices = geodesic_sphere(GEODESIC_FREQ)
# Create spheres
spheres = []
for i in range(analysis.spheres_needed):
sphere = DysonSphere(
sphere_id=i,
vertices=template_vertices.copy(),
junctions={},
layer_assignments={},
)
spheres.append(sphere)
# Assign layers to spheres
current_sphere = 0
current_vertex = 0
total_junctions = 0
for layer in analysis.layers:
tensor = weights[layer.name]
if len(tensor.shape) >= 2:
# Matrix layer - each row is a neuron
for neuron_idx in range(tensor.shape[0]):
if current_vertex >= VERTICES_PER_SPHERE:
current_sphere += 1
current_vertex = 0
if current_sphere >= len(spheres):
break
sphere = spheres[current_sphere]
# Create junction
junction = Junction(
vertex_id=current_vertex,
sphere_id=current_sphere,
position=sphere.vertices[current_vertex % len(sphere.vertices)],
weights=tensor[neuron_idx].flatten().astype(np.float32),
bias=0.0,
layer_name=layer.name,
neuron_idx=neuron_idx,
junction_type='MIXED',
)
sphere.junctions[current_vertex] = junction
if layer.name not in sphere.layer_assignments:
sphere.layer_assignments[layer.name] = []
sphere.layer_assignments[layer.name].append(current_vertex)
current_vertex += 1
total_junctions += 1
else:
# Vector layer (bias, etc.) - one junction
if current_vertex >= VERTICES_PER_SPHERE:
current_sphere += 1
current_vertex = 0
if current_sphere < len(spheres):
sphere = spheres[current_sphere]
junction = Junction(
vertex_id=current_vertex,
sphere_id=current_sphere,
position=sphere.vertices[current_vertex % len(sphere.vertices)],
weights=tensor.flatten().astype(np.float32),
bias=0.0,
layer_name=layer.name,
neuron_idx=0,
junction_type='BIAS',
)
sphere.junctions[current_vertex] = junction
sphere.layer_assignments[layer.name] = [current_vertex]
current_vertex += 1
total_junctions += 1
# Create spine connections (linear chain)
spine = [(i, i+1) for i in range(len(spheres) - 1)]
return SubstrateArray(
spheres=spheres,
spine_connections=spine,
model_name=analysis.name,
total_junctions=total_junctions,
)
# =============================================================================
# SUBSTRATE SERIALIZATION
# =============================================================================
def serialize_substrate(substrate: SubstrateArray) -> Dict:
"""Serialize substrate to JSON-compatible format."""
data = {
'model_name': substrate.model_name,
'total_junctions': substrate.total_junctions,
'num_spheres': len(substrate.spheres),
'spine_connections': substrate.spine_connections,
'spheres': [],
}
for sphere in substrate.spheres:
sphere_data = {
'sphere_id': sphere.sphere_id,
'num_junctions': len(sphere.junctions),
'layer_assignments': sphere.layer_assignments,
'junctions': {},
}
for vid, junction in sphere.junctions.items():
sphere_data['junctions'][str(vid)] = {
'vertex_id': junction.vertex_id,
'position': junction.position.tolist(),
'weights': junction.weights.tolist(),
'bias': junction.bias,
'layer_name': junction.layer_name,
'neuron_idx': junction.neuron_idx,
'junction_type': junction.junction_type,
}
data['spheres'].append(sphere_data)
return data
def write_substrate(substrate: SubstrateArray, filepath: str):
"""Write substrate to file - binary for large, JSON for small."""
import numpy as np
# Count junctions
total_junctions = sum(len(s.junctions) for s in substrate.spheres)
if total_junctions > 50000:
# Binary format for large substrates
npz_path = filepath.replace('.json', '.npz')
all_junctions = []
for s in substrate.spheres:
for j in s.junctions.values():
pos = j.position.tolist() if hasattr(j.position, 'tolist') else list(j.position)
w = float(np.mean(j.weights)) if hasattr(j.weights, '__len__') else float(j.weights)
all_junctions.append([j.vertex_id, j.sphere_id, w, *pos[:3]])
metadata = {
'model_name': getattr(substrate, 'model_name', 'unknown'),
'sphere_count': len(substrate.spheres),
'junction_count': total_junctions,
}
np.savez_compressed(npz_path,
junctions=np.array(all_junctions, dtype=np.float32) if all_junctions else np.zeros((0,6)),
metadata=json.dumps(metadata)
)
print(f" Written binary: {npz_path} ({os.path.getsize(npz_path)/(1024*1024):.1f} MB)")
return # Skip JSON for large substrates
else:
# JSON for small substrates
data = substrate.to_dict() if hasattr(substrate, 'to_dict') else {'spheres': []}
with open(filepath, 'w') as f:
json.dump(data, f)
def verify_substrate(original_weights: Dict[str, np.ndarray],
substrate: SubstrateArray) -> Dict:
"""
Verify substrate integrity via weight reconstruction.
"""
errors = []
max_error = 0.0
verified_junctions = 0
for sphere in substrate.spheres:
for vid, junction in sphere.junctions.items():
# Find original weights
layer_name = junction.layer_name
if layer_name not in original_weights:
errors.append(f"Missing layer: {layer_name}")
continue
original = original_weights[layer_name]
if len(original.shape) >= 2:
if junction.neuron_idx < original.shape[0]:
original_weights_row = original[junction.neuron_idx].flatten()
reconstructed = np.array(junction.weights)
if len(original_weights_row) == len(reconstructed):
error = np.max(np.abs(original_weights_row - reconstructed))
max_error = max(max_error, error)
verified_junctions += 1
return {
'verified_junctions': verified_junctions,
'max_error': max_error,
'errors': errors,
'integrity_verified': max_error < 1e-6 and len(errors) == 0,
}
# =============================================================================
# HARMONIC STACK REGISTRY
# =============================================================================
@dataclass
class HarmonicStackEntry:
"""Entry in the Harmonic Stack registry."""
model_name: str
category: str
substrate_path: str
spheres_start: int
spheres_count: int
total_junctions: int
params_original: int
import_timestamp: str
checksum: str
class HarmonicStackRegistry:
"""
Registry of all models in the Harmonic Stack.
"""
def __init__(self, registry_path: str = 'harmonic_stack_registry.json'):
self.registry_path = registry_path
self.entries: Dict[str, HarmonicStackEntry] = {}
self.next_sphere = 0 # Next available sphere ID
self.load()
def load(self):
"""Load registry from disk."""
if os.path.exists(self.registry_path):
with open(self.registry_path) as f:
data = json.load(f)
for name, entry_data in data.get('entries', {}).items():
self.entries[name] = HarmonicStackEntry(**entry_data)
self.next_sphere = data.get('next_sphere', 0)
def save(self):
"""Save registry to disk."""
data = {
'entries': {name: entry.__dict__ for name, entry in self.entries.items()},
'next_sphere': self.next_sphere,
'last_updated': datetime.now().isoformat(),
}
with open(self.registry_path, 'w') as f:
json.dump(data, f, indent=2)
def register(self, model_name: str, category: str, substrate_path: str,
spheres_count: int, total_junctions: int, params_original: int) -> HarmonicStackEntry:
"""Register a model in the stack."""
# Calculate checksum
with open(substrate_path, 'rb') as f:
checksum = hashlib.md5(f.read()).hexdigest()
entry = HarmonicStackEntry(
model_name=model_name,
category=category,
substrate_path=substrate_path,
spheres_start=self.next_sphere,
spheres_count=spheres_count,
total_junctions=total_junctions,
params_original=params_original,
import_timestamp=datetime.now().isoformat(),
checksum=checksum,
)
self.entries[model_name] = entry
self.next_sphere += spheres_count
self.save()
return entry
def get_by_category(self, category: str) -> List[HarmonicStackEntry]:
"""Get all models in a category."""
return [e for e in self.entries.values() if e.category == category]
def summary(self) -> Dict:
"""Get stack summary."""
by_category = {}
for entry in self.entries.values():
cat = entry.category
if cat not in by_category:
by_category[cat] = {'count': 0, 'junctions': 0, 'spheres': 0}
by_category[cat]['count'] += 1
by_category[cat]['junctions'] += entry.total_junctions
by_category[cat]['spheres'] += entry.spheres_count
return {
'total_models': len(self.entries),
'total_spheres': self.next_sphere,
'by_category': by_category,
}
# =============================================================================
# MAIN PIPELINE
# =============================================================================
def translate_model(model_path: str, category: str = 'general',
output_dir: str = '.') -> Dict:
"""
Complete pipeline: Load → Analyze → Translate → Write → Verify → Register
"""
print(f"\n{'='*60}")
print(f"TRANSLATING: {model_path}")
print(f"{'='*60}")
# Determine format
model_path = Path(model_path)
suffix = model_path.suffix.lower()
loader = None
for fmt in SUPPORTED_FORMATS:
if suffix in fmt.extensions:
loader = globals()[f'load_{fmt.name}']
break
if loader is None:
raise ValueError(f"Unsupported format: {suffix}")
# Stage 1: Load
print("\n[1/6] Loading weights...")
weights = loader(str(model_path))
print(f" Loaded {len(weights)} tensors")
# Stage 2: Analyze
print("\n[2/6] Analyzing model...")
analysis = analyze_weights(weights, model_path.stem)
print(f" Total params: {analysis.total_params:,}")
print(f" Neurons: {analysis.neurons:,}")
print(f" Spheres needed: {analysis.spheres_needed}")
print(f" Estimated substrate: {analysis.estimated_substrate_mb:.1f} MB")
# Stage 3: Translate
print("\n[3/6] Translating to geometric substrate...")
substrate = translate_to_substrate(weights, analysis)
print(f" Created {len(substrate.spheres)} spheres")
print(f" Total junctions: {substrate.total_junctions:,}")
# Stage 4: Write
print("\n[4/6] Writing substrate...")
output_path = Path(output_dir) / f"{model_path.stem}_substrate.json"
write_substrate(substrate, str(output_path))
# Check for binary or JSON
npz_path = output_path.with_suffix('.npz')
if npz_path.exists():
file_size = npz_path.stat().st_size / (1024 * 1024)
output_path = npz_path
else:
file_size = output_path.stat().st_size / (1024 * 1024)
print(f" Written to: {output_path}")
print(f" File size: {file_size:.1f} MB")
# Stage 5: Verify
print("\n[5/6] Verifying integrity...")
verification = verify_substrate(weights, substrate)
print(f" Verified junctions: {verification['verified_junctions']:,}")
print(f" Max error: {verification['max_error']:.2e}")
print(f" Integrity: {'✓ VERIFIED' if verification['integrity_verified'] else '✗ FAILED'}")
# Stage 6: Register
print("\n[6/6] Registering in Harmonic Stack...")
registry = HarmonicStackRegistry()
entry = registry.register(
model_name=model_path.stem,
category=category,
substrate_path=str(output_path),
spheres_count=len(substrate.spheres),
total_junctions=substrate.total_junctions,
params_original=analysis.total_params,
)
print(f" Registered as: {entry.model_name}")
print(f" Spheres: {entry.spheres_start} - {entry.spheres_start + entry.spheres_count - 1}")
# Summary
stack_summary = registry.summary()
print(f"\n{'='*60}")
print("HARMONIC STACK STATUS")
print(f"{'='*60}")
print(f" Total models: {stack_summary['total_models']}")
print(f" Total spheres: {stack_summary['total_spheres']}")
for cat, stats in stack_summary['by_category'].items():
print(f" {cat}: {stats['count']} models, {stats['junctions']:,} junctions")
return {
'model_name': model_path.stem,
'analysis': analysis.__dict__,
'substrate_path': str(output_path),
'verification': verification,
'stack_entry': entry.__dict__,
}
# =============================================================================
# COMMAND LINE INTERFACE
# =============================================================================
def main():
print("=" * 70)
print("HARMONIC STACK MODEL TRANSLATION PIPELINE")
print("Ghost in the Machine Labs")
print("=" * 70)
# Check for test model
test_model = Path('test_model.safetensors')
if test_model.exists():
print(f"\nFound test model: {test_model}")
result = translate_model(str(test_model), category='test')
else:
print("\nNo test model found. Creating synthetic test...")
# Create synthetic model
print("\nCreating synthetic model for pipeline test...")
weights = {
'encoder.weight': np.random.randn(256, 128).astype(np.float32),
'encoder.bias': np.random.randn(256).astype(np.float32),
'hidden.weight': np.random.randn(512, 256).astype(np.float32),
'hidden.bias': np.random.randn(512).astype(np.float32),
'decoder.weight': np.random.randn(128, 512).astype(np.float32),
'decoder.bias': np.random.randn(128).astype(np.float32),
}
# Save as npz for testing
np.savez('synthetic_model.npz', **weights)
print(" Created synthetic_model.npz")
result = translate_model('synthetic_model.npz', category='test')
print("\n" + "=" * 70)
print("TRANSLATION COMPLETE")
print("=" * 70)
return result
if __name__ == "__main__":
main()
|