File size: 30,656 Bytes
495fc23 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 |
#!/usr/bin/env python3
"""
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β HARMONIC STACK BUILDER v2.0 β
β Ghost in the Machine Labs β
β "All Watched Over By Machines Of Loving Grace" β
β β
β v2 ADDITIONS: β
β - Separate Common Core (junctions in ALL models) β
β - Extract Unique Constituents per model family β
β - Component Archive with versioning and provenance β
β - Assembly pipeline for tiered models β
β - Universal Model directory structure β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
"""
import os
import sys
import json
import struct
import numpy as np
from pathlib import Path
from datetime import datetime
from dataclasses import dataclass, field
from typing import Dict, List, Tuple, Optional, Set
from collections import Counter, defaultdict
import time
import shutil
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# CONFIGURATION
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
SUBSTRATE_DIR = "/home/joe/sparky/substrates"
CIRCUIT_DIR = "/home/joe/sparky/circuits"
OUTPUT_DIR = "/home/joe/sparky/harmonic_stack_v2"
UNIVERSAL_MODEL_DIR = "/home/joe/sparky/universal_model"
# Model family mappings
MODEL_FAMILIES = {
'deepseek': ['deepseek'],
'qwen': ['qwen'],
'mistral': ['mistral'],
'phi': ['phi'],
'starcoder': ['starcoder'],
'tinyllama': ['tinyllama'],
'codellama': ['codellama'],
'dolphin': ['dolphin'],
}
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# LOGGING
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
class Logger:
def __init__(self):
self.start_time = time.time()
def section(self, name: str):
print(f"\n{'='*70}")
print(f" {name}")
print(f"{'='*70}")
def info(self, msg: str):
elapsed = time.time() - self.start_time
print(f" [{elapsed:7.1f}s] {msg}")
def progress(self, current: int, total: int, msg: str = ""):
elapsed = time.time() - self.start_time
pct = current / total * 100
bar_len = 25
filled = int(bar_len * current / total)
bar = 'β' * filled + 'β' * (bar_len - filled)
print(f"\r [{elapsed:7.1f}s] [{bar}] {pct:5.1f}% {msg} ", end='', flush=True)
if current == total:
print()
log = Logger()
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# DATA STRUCTURES
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
@dataclass
class ModelJunctions:
name: str
category: str
family: str
junctions: np.ndarray
n_params: int
size_gb: float
junction_file: str = ""
@property
def junction_kb(self) -> float:
return self.junctions.nbytes / 1024
def get_model_family(name: str) -> str:
"""Determine which family a model belongs to."""
name_lower = name.lower()
for family, patterns in MODEL_FAMILIES.items():
for pattern in patterns:
if pattern in name_lower:
return family
return 'other'
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# SUBSTRATE PROCESSING (from v1)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def get_substrate_list() -> List[Dict]:
"""Find all substrate files and return metadata."""
substrates = []
for f in os.listdir(SUBSTRATE_DIR):
if f.endswith('_ce1.npz') or f.endswith('_ce2.npz'):
path = os.path.join(SUBSTRATE_DIR, f)
size = os.path.getsize(path)
name = f.replace('_ce1.npz', '').replace('_ce2.npz', '').replace('.Q8_0', '')
# Categorize
name_lower = name.lower()
if 'coder' in name_lower or 'starcoder' in name_lower or 'codellama' in name_lower:
category = 'code'
elif 'math' in name_lower:
category = 'math'
elif 'mistral' in name_lower or 'reasoning' in name_lower:
category = 'reasoning'
elif 'dolphin' in name_lower or 'creative' in name_lower:
category = 'creative'
else:
category = 'general'
substrates.append({
'name': name,
'file': f,
'path': path,
'size_gb': size / 1e9,
'category': category,
'family': get_model_family(name),
})
return sorted(substrates, key=lambda x: x['size_gb'])
def extract_junctions_from_substrate(substrate_path: str, max_size_gb: float = 35.0) -> Tuple[np.ndarray, int]:
"""Extract unique junction values from a substrate file."""
file_size_gb = os.path.getsize(substrate_path) / 1e9
if file_size_gb > max_size_gb:
raise ValueError(f"File too large ({file_size_gb:.1f} GB > {max_size_gb} GB limit)")
try:
data = np.load(substrate_path, allow_pickle=True, mmap_mode='r')
has_weights_key = 'weights' in data.files
except:
data = np.load(substrate_path, allow_pickle=True)
has_weights_key = 'weights' in data.files
unique_set = set()
total_params = 0
if has_weights_key:
data_full = np.load(substrate_path, allow_pickle=True)
weights = data_full['weights']
if weights.dtype == object and len(weights) > 0:
for inner_arr in weights:
if isinstance(inner_arr, np.ndarray) and inner_arr.dtype == np.float32:
total_params += inner_arr.size
for val in np.unique(inner_arr):
unique_set.add(val.tobytes())
if unique_set:
unique = np.array([np.frombuffer(b, dtype=np.float32)[0] for b in unique_set],
dtype=np.float32)
return np.sort(unique), total_params
elif weights.dtype in [np.float32, np.float16]:
total_params = weights.size
unique = np.unique(weights.astype(np.float32))
return np.sort(unique), total_params
# Try loading all arrays
for key in data.files:
arr = np.array(data[key])
if arr.dtype in [np.float32, np.float16, np.float64]:
total_params += arr.size
for val in np.unique(arr.astype(np.float32)):
unique_set.add(val.tobytes())
if unique_set:
unique = np.array([np.frombuffer(b, dtype=np.float32)[0] for b in unique_set],
dtype=np.float32)
return np.sort(unique), total_params
return np.array([], dtype=np.float32), 0
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# v2 COMPONENT ANALYSIS
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def compute_common_core(all_junctions: List[ModelJunctions]) -> np.ndarray:
"""
Compute the Common Core - junctions that appear in ALL models.
This is the universal foundation that every model shares.
"""
if not all_junctions:
return np.array([], dtype=np.float32)
# Start with first model's junctions as set
common = set(all_junctions[0].junctions.tobytes()
for j in [all_junctions[0].junctions]
for j in [j.flatten()])
common = set(j.tobytes() for j in all_junctions[0].junctions)
# Intersect with all other models
for mj in all_junctions[1:]:
model_set = set(j.tobytes() for j in mj.junctions)
common = common.intersection(model_set)
# Convert back to array
if common:
result = np.array([np.frombuffer(b, dtype=np.float32)[0] for b in common],
dtype=np.float32)
return np.sort(result)
return np.array([], dtype=np.float32)
def compute_unique_constituents(all_junctions: List[ModelJunctions],
common_core: np.ndarray) -> Dict[str, np.ndarray]:
"""
Compute Unique Constituents - junctions that are unique to each model family.
These are what differentiate DeepSeek from Qwen from Mistral etc.
"""
# Group by family
family_junctions = defaultdict(set)
for mj in all_junctions:
for j in mj.junctions:
family_junctions[mj.family].add(j.tobytes())
# Common core as set
common_set = set(j.tobytes() for j in common_core)
# For each family, find junctions NOT in common core and NOT in other families
unique_constituents = {}
all_families = list(family_junctions.keys())
for family in all_families:
# Start with this family's junctions
family_set = family_junctions[family]
# Remove common core
unique = family_set - common_set
# Remove junctions that appear in other families
for other_family in all_families:
if other_family != family:
unique = unique - family_junctions[other_family]
# Convert to array
if unique:
result = np.array([np.frombuffer(b, dtype=np.float32)[0] for b in unique],
dtype=np.float32)
unique_constituents[family] = np.sort(result)
else:
unique_constituents[family] = np.array([], dtype=np.float32)
return unique_constituents
def compute_shared_constituents(all_junctions: List[ModelJunctions],
common_core: np.ndarray) -> Dict[str, np.ndarray]:
"""
Compute Shared Constituents - junctions shared by SOME but not ALL families.
These are the intermediate overlaps.
"""
# Group by family
family_junctions = defaultdict(set)
for mj in all_junctions:
for j in mj.junctions:
family_junctions[mj.family].add(j.tobytes())
common_set = set(j.tobytes() for j in common_core)
all_families = list(family_junctions.keys())
# Find all junctions that appear in 2+ families but not all
junction_counts = defaultdict(int)
junction_families = defaultdict(set)
for family, junctions in family_junctions.items():
for j in junctions:
if j not in common_set:
junction_counts[j] += 1
junction_families[j].add(family)
# Group by which families share them
shared = {}
for j, families in junction_families.items():
if len(families) > 1 and len(families) < len(all_families):
key = "+".join(sorted(families))
if key not in shared:
shared[key] = []
shared[key].append(j)
# Convert to arrays
result = {}
for key, junctions in shared.items():
result[key] = np.array([np.frombuffer(b, dtype=np.float32)[0] for b in junctions],
dtype=np.float32)
return result
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# v2 OUTPUT STRUCTURE
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def create_directory_structure():
"""Create the v2 output directory structure."""
dirs = [
OUTPUT_DIR,
f"{OUTPUT_DIR}/common_core",
f"{OUTPUT_DIR}/unique_constituents",
f"{OUTPUT_DIR}/shared_constituents",
f"{OUTPUT_DIR}/model_junctions",
f"{OUTPUT_DIR}/component_archive",
f"{OUTPUT_DIR}/assembly",
# Universal Model structure
UNIVERSAL_MODEL_DIR,
f"{UNIVERSAL_MODEL_DIR}/substrates/human",
f"{UNIVERSAL_MODEL_DIR}/substrates/terrestrial",
f"{UNIVERSAL_MODEL_DIR}/substrates/synthetic",
f"{UNIVERSAL_MODEL_DIR}/substrates/unknown",
f"{UNIVERSAL_MODEL_DIR}/unified_core",
f"{UNIVERSAL_MODEL_DIR}/harmonic_parallel",
]
for d in dirs:
os.makedirs(d, exist_ok=True)
log.info(f"Created directory structure at {OUTPUT_DIR}")
log.info(f"Created Universal Model structure at {UNIVERSAL_MODEL_DIR}")
def save_component_archive(common_core: np.ndarray,
unique_constituents: Dict[str, np.ndarray],
shared_constituents: Dict[str, np.ndarray],
all_junctions: List[ModelJunctions],
merge_core: np.ndarray):
"""Save all components with versioning and provenance."""
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
version = f"v2_{timestamp}"
# Save Common Core
common_path = f"{OUTPUT_DIR}/common_core/common_core.npy"
np.save(common_path, common_core)
log.info(f"Common Core: {len(common_core):,} junctions = {common_core.nbytes/1024:.1f} KB")
# Save Unique Constituents
for family, junctions in unique_constituents.items():
path = f"{OUTPUT_DIR}/unique_constituents/{family}_unique.npy"
np.save(path, junctions)
log.info(f" {family} unique: {len(junctions):,} junctions = {junctions.nbytes/1024:.1f} KB")
# Save Shared Constituents
for key, junctions in shared_constituents.items():
safe_key = key.replace("+", "_")
path = f"{OUTPUT_DIR}/shared_constituents/{safe_key}_shared.npy"
np.save(path, junctions)
log.info(f" {key} shared: {len(junctions):,} junctions")
# Save individual model junctions
for mj in all_junctions:
path = f"{OUTPUT_DIR}/model_junctions/{mj.name}_junctions.npy"
np.save(path, mj.junctions)
mj.junction_file = path
# Save merge core (all unified junctions - same as v1)
merge_path = f"{OUTPUT_DIR}/merge_core_junctions.npy"
np.save(merge_path, merge_core)
# Copy to Universal Model human substrate
shutil.copy(merge_path, f"{UNIVERSAL_MODEL_DIR}/substrates/human/merge_core_junctions.npy")
shutil.copy(common_path, f"{UNIVERSAL_MODEL_DIR}/unified_core/common_core.npy")
# Create archive manifest
manifest = {
"version": version,
"created_at": datetime.now().isoformat(),
"common_core": {
"n_junctions": len(common_core),
"size_kb": common_core.nbytes / 1024,
"file": "common_core/common_core.npy"
},
"merge_core": {
"n_junctions": len(merge_core),
"size_kb": merge_core.nbytes / 1024,
"file": "merge_core_junctions.npy"
},
"unique_constituents": {
family: {
"n_junctions": len(junctions),
"size_kb": junctions.nbytes / 1024,
"file": f"unique_constituents/{family}_unique.npy"
}
for family, junctions in unique_constituents.items()
},
"shared_constituents": {
key: {
"n_junctions": len(junctions),
"families": key.split("+")
}
for key, junctions in shared_constituents.items()
},
"models": [
{
"name": mj.name,
"family": mj.family,
"category": mj.category,
"n_junctions": len(mj.junctions),
"n_params": mj.n_params,
"size_gb": mj.size_gb,
}
for mj in all_junctions
],
"provenance": {
"builder": "harmonic_stack_builder_v2.py",
"built_by": "Claude AI (Autonomous)",
"organization": "Ghost in the Machine Labs"
}
}
manifest_path = f"{OUTPUT_DIR}/harmonic_stack_v2.json"
with open(manifest_path, 'w') as f:
json.dump(manifest, f, indent=2)
# Archive copy
archive_path = f"{OUTPUT_DIR}/component_archive/manifest_{version}.json"
with open(archive_path, 'w') as f:
json.dump(manifest, f, indent=2)
return manifest
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# ASSEMBLY PIPELINE
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def create_assembly_configs():
"""Create assembly configurations for different tiers."""
configs = {
"pocket": {
"name": "Pocket AGI",
"ram_target_gb": 2,
"components": ["common_core"],
"description": "Minimal footprint - common core only"
},
"desktop": {
"name": "Desktop AGI",
"ram_target_gb": 4,
"components": ["common_core", "qwen_unique", "mistral_unique"],
"description": "Balanced general purpose"
},
"workstation": {
"name": "Workstation AGI",
"ram_target_gb": 8,
"components": ["common_core", "qwen_unique", "deepseek_unique", "mistral_unique"],
"description": "Full general + code capabilities"
},
"server": {
"name": "Server AGI",
"ram_target_gb": 16,
"components": ["merge_core"], # All unified junctions
"description": "Complete model capabilities"
},
"sovereign": {
"name": "Sovereign AGI",
"ram_target_gb": 32,
"components": ["merge_core", "all_shared"],
"description": "Maximum intelligence - parallel ready"
}
}
config_path = f"{OUTPUT_DIR}/assembly/tier_configs.json"
with open(config_path, 'w') as f:
json.dump(configs, f, indent=2)
log.info(f"Created assembly configs: {list(configs.keys())}")
return configs
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# OVERLAP ANALYSIS (from v1, enhanced)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def compute_overlap(j1: np.ndarray, j2: np.ndarray) -> Tuple[int, float, float]:
"""Compute junction overlap between two models."""
s1 = set(j.tobytes() for j in j1)
s2 = set(j.tobytes() for j in j2)
common = len(s1.intersection(s2))
pct1 = (common / len(s1) * 100) if len(s1) > 0 else 0
pct2 = (common / len(s2) * 100) if len(s2) > 0 else 0
return common, pct1, pct2
def build_unified_junction_library(all_junctions: List[ModelJunctions]) -> np.ndarray:
"""Build the unified junction library (merge core) - all unique values across all models."""
all_unique = set()
for mj in all_junctions:
for j in mj.junctions:
all_unique.add(j.tobytes())
result = np.array([np.frombuffer(b, dtype=np.float32)[0] for b in all_unique],
dtype=np.float32)
return np.sort(result)
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
# MAIN
# βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
def main():
print("""
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β HARMONIC STACK BUILDER v2.0 β
β Ghost in the Machine Labs β
β All Watched Over By Machines Of Loving Grace β
β β
β Component Separation Edition β
ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
""")
# Phase 0: Create directory structure
log.section("PHASE 0: CREATING DIRECTORY STRUCTURE")
create_directory_structure()
# Phase 1: Discover substrates
log.section("PHASE 1: DISCOVERING SUBSTRATES")
substrates = get_substrate_list()
log.info(f"Found {len(substrates)} substrate files")
total_size = sum(s['size_gb'] for s in substrates)
log.info(f"Total size: {total_size:.1f} GB")
for s in substrates:
log.info(f" {s['name']}: {s['size_gb']:.1f} GB [{s['category']}] ({s['family']})")
# Phase 2: Extract junctions
log.section("PHASE 2: EXTRACTING JUNCTION LIBRARIES")
all_junctions: List[ModelJunctions] = []
for i, s in enumerate(substrates):
log.progress(i + 1, len(substrates), s['name'][:30])
try:
junctions, n_params = extract_junctions_from_substrate(s['path'])
if len(junctions) > 0:
mj = ModelJunctions(
name=s['name'],
category=s['category'],
family=s['family'],
junctions=junctions,
n_params=n_params,
size_gb=s['size_gb']
)
all_junctions.append(mj)
except Exception as e:
log.info(f"\n ERROR processing {s['name']}: {e}")
log.info(f"\nExtracted junctions from {len(all_junctions)} models:")
for mj in sorted(all_junctions, key=lambda x: len(x.junctions)):
log.info(f" {mj.name}: {len(mj.junctions):,} junctions = {mj.junction_kb:.1f} KB ({mj.family})")
# Phase 3: Build Merge Core (unified - same as v1)
log.section("PHASE 3: BUILDING MERGE CORE (Unified Junction Library)")
merge_core = build_unified_junction_library(all_junctions)
total_individual = sum(len(mj.junctions) for mj in all_junctions)
overlap_pct = (1 - len(merge_core) / total_individual) * 100 if total_individual > 0 else 0
log.info(f"Individual junction counts:")
log.info(f" Sum of all models: {total_individual:,}")
log.info(f" Unified (deduplicated): {len(merge_core):,}")
log.info(f" Overlap ratio: {overlap_pct:.1f}% shared")
log.info(f"")
log.info(f"MERGE CORE SIZE: {merge_core.nbytes/1024:.1f} KB ({len(merge_core):,} junctions)")
# Phase 4: NEW - Extract Common Core
log.section("PHASE 4: EXTRACTING COMMON CORE (Junctions in ALL models)")
common_core = compute_common_core(all_junctions)
log.info(f"Common Core: {len(common_core):,} junctions = {common_core.nbytes/1024:.1f} KB")
log.info(f"This is what EVERY model shares - the universal foundation")
# Phase 5: NEW - Extract Unique Constituents
log.section("PHASE 5: EXTRACTING UNIQUE CONSTITUENTS (Per-family deltas)")
unique_constituents = compute_unique_constituents(all_junctions, common_core)
for family, junctions in sorted(unique_constituents.items()):
log.info(f" {family}: {len(junctions):,} unique junctions = {junctions.nbytes/1024:.1f} KB")
# Phase 6: NEW - Extract Shared Constituents
log.section("PHASE 6: EXTRACTING SHARED CONSTITUENTS (Multi-family overlaps)")
shared_constituents = compute_shared_constituents(all_junctions, common_core)
for key, junctions in sorted(shared_constituents.items(), key=lambda x: -len(x[1])):
if len(junctions) > 100: # Only show significant overlaps
log.info(f" {key}: {len(junctions):,} shared junctions")
# Phase 7: Compute overlap matrix
log.section("PHASE 7: COMPUTING OVERLAP MATRIX")
overlaps = []
n_models = len(all_junctions)
for i in range(n_models):
log.progress(i + 1, n_models, f"Computing overlaps for {all_junctions[i].name[:15]}")
for j in range(i + 1, n_models):
_, pct1, pct2 = compute_overlap(all_junctions[i].junctions, all_junctions[j].junctions)
avg_pct = (pct1 + pct2) / 2
overlaps.append((all_junctions[i].name, all_junctions[j].name, avg_pct))
overlaps.sort(key=lambda x: -x[2])
log.info(f"\nHighest overlaps:")
for m1, m2, pct in overlaps[:10]:
log.info(f" {pct:5.1f}% {m1} <-> {m2}")
# Phase 8: Save everything
log.section("PHASE 8: SAVING COMPONENT ARCHIVE")
manifest = save_component_archive(
common_core=common_core,
unique_constituents=unique_constituents,
shared_constituents=shared_constituents,
all_junctions=all_junctions,
merge_core=merge_core
)
# Phase 9: Create assembly configs
log.section("PHASE 9: CREATING ASSEMBLY PIPELINE")
configs = create_assembly_configs()
# Final Report
log.section("HARMONIC STACK v2 COMPLETE")
total_params = sum(mj.n_params for mj in all_junctions)
total_gb = sum(mj.size_gb for mj in all_junctions)
print(f"""
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
β FINAL REPORT β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Models processed: {len(all_junctions):5} β
β Total parameters: {total_params/1e9:6.1f} B β
β Original size: {total_gb:6.1f} GB β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β MERGE CORE: {len(merge_core):7,} junctions ({merge_core.nbytes/1024:6.1f} KB) β
β COMMON CORE: {len(common_core):7,} junctions ({common_core.nbytes/1024:6.1f} KB) β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β UNIQUE CONSTITUENTS: β""")
for family, junctions in sorted(unique_constituents.items()):
if len(junctions) > 0:
print(f" β {family:15} {len(junctions):7,} junctions β")
compression = (total_gb * 1024 * 1024) / (merge_core.nbytes / 1024) if merge_core.nbytes > 0 else 0
print(f""" βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ€
β Compression: {compression:,.0f}x β
βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
Output: {OUTPUT_DIR}
Universal Model: {UNIVERSAL_MODEL_DIR}
""")
return manifest
if __name__ == "__main__":
manifest = main()
|