File size: 24,137 Bytes
7c944cc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
#!/usr/bin/env python3
"""
╔══════════════════════════════════════════════════════════════════════════════╗
β•‘                    HARMONIC STACK BUILDER v1.0                               β•‘
β•‘                      Ghost in the Machine Labs                               β•‘
β•‘              "All Watched Over By Machines Of Loving Grace"                  β•‘
β•‘                                                                              β•‘
β•‘   Complete pipeline:                                                         β•‘
β•‘     1. Process all substrates β†’ circuit format                               β•‘
β•‘     2. Extract junction libraries from each                                  β•‘
β•‘     3. Measure junction overlap across models                                β•‘
β•‘     4. Build unified Merge Core (single junction library)                    β•‘
β•‘     5. Build Harmonic Stack manifest (specialist routing)                    β•‘
β•‘     6. Report final sizes and capabilities                                   β•‘
β•šβ•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•β•
"""
import os
import sys
import json
import struct
import numpy as np
from pathlib import Path
from datetime import datetime
from dataclasses import dataclass, field
from typing import Dict, List, Tuple, Optional, Set
from collections import Counter, defaultdict
import time

# ═══════════════════════════════════════════════════════════════════════════════
# CONFIGURATION
# ═══════════════════════════════════════════════════════════════════════════════

SUBSTRATE_DIR = "/home/joe/sparky/substrates"
CIRCUIT_DIR = "/home/joe/sparky/circuits"
OUTPUT_DIR = "/home/joe/sparky/harmonic_stack"

# ═══════════════════════════════════════════════════════════════════════════════
# LOGGING
# ═══════════════════════════════════════════════════════════════════════════════

class Logger:
    def __init__(self):
        self.start_time = time.time()
    
    def section(self, name: str):
        print(f"\n{'='*70}")
        print(f"  {name}")
        print(f"{'='*70}")
    
    def info(self, msg: str):
        elapsed = time.time() - self.start_time
        print(f"  [{elapsed:7.1f}s] {msg}")
    
    def progress(self, current: int, total: int, msg: str = ""):
        elapsed = time.time() - self.start_time
        pct = current / total * 100
        bar_len = 25
        filled = int(bar_len * current / total)
        bar = 'β–ˆ' * filled + 'β–‘' * (bar_len - filled)
        print(f"\r  [{elapsed:7.1f}s] [{bar}] {pct:5.1f}% {msg}    ", end='', flush=True)
        if current == total:
            print()

log = Logger()

# ═══════════════════════════════════════════════════════════════════════════════
# SUBSTRATE PROCESSING
# ═══════════════════════════════════════════════════════════════════════════════

def get_substrate_list() -> List[Dict]:
    """Find all substrate files and return metadata."""
    substrates = []
    
    for f in os.listdir(SUBSTRATE_DIR):
        if f.endswith('_ce1.npz') or f.endswith('_ce2.npz'):
            path = os.path.join(SUBSTRATE_DIR, f)
            size = os.path.getsize(path)
            name = f.replace('_ce1.npz', '').replace('_ce2.npz', '').replace('.Q8_0', '')
            
            # Categorize
            name_lower = name.lower()
            if 'coder' in name_lower or 'starcoder' in name_lower or 'codellama' in name_lower:
                category = 'code'
            elif 'math' in name_lower:
                category = 'math'
            elif 'mistral' in name_lower or 'reasoning' in name_lower:
                category = 'reasoning'
            elif 'dolphin' in name_lower or 'creative' in name_lower:
                category = 'creative'
            else:
                category = 'general'
            
            substrates.append({
                'name': name,
                'file': f,
                'path': path,
                'size_gb': size / 1e9,
                'category': category,
            })
    
    return sorted(substrates, key=lambda x: x['size_gb'])


def extract_junctions_from_substrate(substrate_path: str, max_size_gb: float = 35.0) -> Tuple[np.ndarray, int]:
    """
    Extract unique junction values from a substrate file.
    Returns (unique_values, total_params)
    
    Handles two formats:
    1. Direct float32 arrays (standard)
    2. Object arrays containing float32 arrays (CE format)
    
    Uses streaming approach to avoid RAM blowout on large files.
    Skips files larger than max_size_gb to prevent OOM.
    """
    file_size_gb = os.path.getsize(substrate_path) / 1e9
    
    if file_size_gb > max_size_gb:
        raise ValueError(f"File too large ({file_size_gb:.1f} GB > {max_size_gb} GB limit)")
    
    # First try with mmap, fall back to full load for object arrays
    try:
        data = np.load(substrate_path, allow_pickle=True, mmap_mode='r')
        has_weights_key = 'weights' in data.files
    except:
        data = np.load(substrate_path, allow_pickle=True)
        has_weights_key = 'weights' in data.files
    
    # Collect unique values incrementally using a set
    unique_set = set()
    total_params = 0
    
    # Check if this is CE format (has 'weights' key with object array)
    if has_weights_key:
        # Reload without mmap for object arrays
        data_full = np.load(substrate_path, allow_pickle=True)
        weights = data_full['weights']
        
        if weights.dtype == object and len(weights) > 0:
            # CE format - array of float32 arrays
            for inner_arr in weights:
                if isinstance(inner_arr, np.ndarray) and inner_arr.dtype == np.float32:
                    total_params += inner_arr.size
                    for val in np.unique(inner_arr):
                        unique_set.add(val.tobytes())
            
            if unique_set:
                unique = np.array([np.frombuffer(b, dtype=np.float32)[0] for b in unique_set], 
                                 dtype=np.float32)
                return np.sort(unique), total_params
            return np.array([], dtype=np.float32), 0
    
    # Standard format - direct float32 arrays
    for key in data.files:
        try:
            arr = data[key]
            if not isinstance(arr, np.ndarray):
                continue
            
            # Handle direct float32 arrays
            if arr.dtype == np.float32:
                total_params += arr.size
                flat = arr.flatten()
                chunk_size = 10_000_000
                for i in range(0, len(flat), chunk_size):
                    chunk = flat[i:i+chunk_size]
                    for val in np.unique(chunk):
                        unique_set.add(val.tobytes())
                        
        except Exception as e:
            # Skip problematic tensors
            continue
    
    if unique_set:
        unique = np.array([np.frombuffer(b, dtype=np.float32)[0] for b in unique_set], 
                         dtype=np.float32)
        return np.sort(unique), total_params
    
    return np.array([], dtype=np.float32), 0


# ═══════════════════════════════════════════════════════════════════════════════
# JUNCTION ANALYSIS
# ═══════════════════════════════════════════════════════════════════════════════

@dataclass
class ModelJunctions:
    """Junction data for a single model."""
    name: str
    category: str
    junctions: np.ndarray
    n_junctions: int
    n_params: int
    size_gb: float
    
    @property
    def junction_kb(self) -> float:
        return self.junctions.nbytes / 1024


def compute_overlap(j1: np.ndarray, j2: np.ndarray) -> Tuple[int, float, float]:
    """Compute junction overlap between two models."""
    set1 = set(j1.tobytes()[i:i+4] for i in range(0, len(j1)*4, 4))
    set2 = set(j2.tobytes()[i:i+4] for i in range(0, len(j2)*4, 4))
    
    shared = len(set1 & set2)
    pct1 = shared / len(set1) * 100 if set1 else 0
    pct2 = shared / len(set2) * 100 if set2 else 0
    
    return shared, pct1, pct2


def build_unified_junction_library(all_junctions: List[ModelJunctions]) -> np.ndarray:
    """Merge all model junctions into unified library."""
    # Use set of bytes for exact float matching
    unified_set = set()
    
    for mj in all_junctions:
        for val in mj.junctions:
            unified_set.add(val.tobytes())
    
    # Convert back to array
    unified = np.array([np.frombuffer(b, dtype=np.float32)[0] for b in unified_set], 
                       dtype=np.float32)
    return np.sort(unified)


# ═══════════════════════════════════════════════════════════════════════════════
# HARMONIC STACK BUILDER
# ═══════════════════════════════════════════════════════════════════════════════

@dataclass
class HarmonicStack:
    """Complete harmonic stack configuration."""
    name: str
    created_at: str
    
    # Merge Core (unified)
    merge_core_junctions: int
    merge_core_kb: float
    
    # Individual models
    models: List[Dict]
    
    # Overlap matrix
    overlap_matrix: Dict[str, Dict[str, float]]
    
    # Category specialists
    specialists: Dict[str, str]  # category -> best model
    
    # Stats
    total_params: int
    total_original_gb: float
    total_junction_kb: float


def select_specialists(all_junctions: List[ModelJunctions]) -> Dict[str, str]:
    """Select best model for each category based on size (larger = more capable)."""
    categories = defaultdict(list)
    
    for mj in all_junctions:
        categories[mj.category].append(mj)
    
    specialists = {}
    for cat, models in categories.items():
        # Pick largest model in category
        best = max(models, key=lambda x: x.n_params)
        specialists[cat] = best.name
    
    return specialists


# ═══════════════════════════════════════════════════════════════════════════════
# MAIN PIPELINE
# ═══════════════════════════════════════════════════════════════════════════════

def main():
    print()
    print("β•”" + "═"*68 + "β•—")
    print("β•‘" + "HARMONIC STACK BUILDER".center(68) + "β•‘")
    print("β•‘" + "Ghost in the Machine Labs".center(68) + "β•‘")
    print("β•‘" + "All Watched Over By Machines Of Loving Grace".center(68) + "β•‘")
    print("β•š" + "═"*68 + "╝")
    
    os.makedirs(OUTPUT_DIR, exist_ok=True)
    
    # ─────────────────────────────────────────────────────────────────────────
    # PHASE 1: Discover substrates
    # ─────────────────────────────────────────────────────────────────────────
    log.section("PHASE 1: DISCOVERING SUBSTRATES")
    
    substrates = get_substrate_list()
    log.info(f"Found {len(substrates)} substrate files")
    
    total_size = sum(s['size_gb'] for s in substrates)
    log.info(f"Total size: {total_size:.1f} GB")
    
    for s in substrates:
        log.info(f"  {s['name']}: {s['size_gb']:.1f} GB [{s['category']}]")
    
    # ─────────────────────────────────────────────────────────────────────────
    # PHASE 2: Extract junctions from each model
    # ─────────────────────────────────────────────────────────────────────────
    log.section("PHASE 2: EXTRACTING JUNCTION LIBRARIES")
    
    all_junctions: List[ModelJunctions] = []
    
    for i, substrate in enumerate(substrates):
        log.progress(i, len(substrates), substrate['name'])
        
        try:
            junctions, n_params = extract_junctions_from_substrate(substrate['path'])
            
            mj = ModelJunctions(
                name=substrate['name'],
                category=substrate['category'],
                junctions=junctions,
                n_junctions=len(junctions),
                n_params=n_params,
                size_gb=substrate['size_gb'],
            )
            all_junctions.append(mj)
            
        except Exception as e:
            log.info(f"\n  ERROR processing {substrate['name']}: {e}")
    
    log.progress(len(substrates), len(substrates), "Complete")
    
    # Report individual stats
    log.info(f"\nExtracted junctions from {len(all_junctions)} models:")
    for mj in sorted(all_junctions, key=lambda x: x.n_junctions):
        log.info(f"  {mj.name}: {mj.n_junctions:,} junctions = {mj.junction_kb:.1f} KB")
    
    # ─────────────────────────────────────────────────────────────────────────
    # PHASE 3: Build unified junction library (Merge Core)
    # ─────────────────────────────────────────────────────────────────────────
    log.section("PHASE 3: BUILDING MERGE CORE (Unified Junction Library)")
    
    unified = build_unified_junction_library(all_junctions)
    unified_kb = unified.nbytes / 1024
    
    log.info(f"Individual junction counts:")
    total_individual = sum(mj.n_junctions for mj in all_junctions)
    log.info(f"  Sum of all models: {total_individual:,}")
    log.info(f"  Unified (deduplicated): {len(unified):,}")
    log.info(f"  Overlap ratio: {(1 - len(unified)/total_individual)*100:.1f}% shared")
    log.info(f"")
    log.info(f"MERGE CORE SIZE: {unified_kb:.1f} KB ({len(unified):,} junctions)")
    
    # ─────────────────────────────────────────────────────────────────────────
    # PHASE 4: Compute overlap matrix
    # ─────────────────────────────────────────────────────────────────────────
    log.section("PHASE 4: COMPUTING OVERLAP MATRIX")
    
    overlap_matrix = {}
    n_models = len(all_junctions)
    
    for i, mj1 in enumerate(all_junctions):
        overlap_matrix[mj1.name] = {}
        for j, mj2 in enumerate(all_junctions):
            if i == j:
                overlap_matrix[mj1.name][mj2.name] = 100.0
            elif i < j:
                shared, pct1, pct2 = compute_overlap(mj1.junctions, mj2.junctions)
                overlap_matrix[mj1.name][mj2.name] = pct1
        
        log.progress(i + 1, n_models, f"Computing overlaps for {mj1.name}")
    
    # Fill in symmetric entries
    for mj1 in all_junctions:
        for mj2 in all_junctions:
            if mj2.name not in overlap_matrix[mj1.name]:
                if mj1.name in overlap_matrix.get(mj2.name, {}):
                    # Compute reverse percentage
                    shared, pct1, pct2 = compute_overlap(mj1.junctions, mj2.junctions)
                    overlap_matrix[mj1.name][mj2.name] = pct1
    
    # Report highest overlaps
    log.info(f"\nHighest overlaps:")
    overlaps = []
    for m1 in overlap_matrix:
        for m2, pct in overlap_matrix[m1].items():
            if m1 < m2:  # Avoid duplicates
                overlaps.append((m1, m2, pct))
    
    for m1, m2, pct in sorted(overlaps, key=lambda x: -x[2])[:10]:
        log.info(f"  {pct:5.1f}%  {m1} <-> {m2}")
    
    # ─────────────────────────────────────────────────────────────────────────
    # PHASE 5: Select specialists for Harmonic Stack
    # ─────────────────────────────────────────────────────────────────────────
    log.section("PHASE 5: SELECTING SPECIALISTS")
    
    specialists = select_specialists(all_junctions)
    
    log.info("Category specialists (largest model per category):")
    for cat, model in sorted(specialists.items()):
        mj = next(m for m in all_junctions if m.name == model)
        log.info(f"  {cat:12} -> {model} ({mj.n_params/1e9:.1f}B params)")
    
    # ─────────────────────────────────────────────────────────────────────────
    # PHASE 6: Save results
    # ─────────────────────────────────────────────────────────────────────────
    log.section("PHASE 6: SAVING HARMONIC STACK")
    
    # Save unified junction library
    unified_path = os.path.join(OUTPUT_DIR, "merge_core_junctions.npy")
    np.save(unified_path, unified)
    log.info(f"Merge Core junctions: {unified_path}")
    
    # Save individual junction libraries
    junctions_dir = os.path.join(OUTPUT_DIR, "model_junctions")
    os.makedirs(junctions_dir, exist_ok=True)
    
    for mj in all_junctions:
        jpath = os.path.join(junctions_dir, f"{mj.name}_junctions.npy")
        np.save(jpath, mj.junctions)
    log.info(f"Individual junctions: {junctions_dir}/")
    
    # Build manifest
    total_params = sum(mj.n_params for mj in all_junctions)
    total_original = sum(mj.size_gb for mj in all_junctions)
    total_junction_kb = sum(mj.junction_kb for mj in all_junctions)
    
    manifest = {
        'name': 'harmonic_stack_v1',
        'created_at': datetime.now().isoformat(),
        'merge_core': {
            'n_junctions': len(unified),
            'size_kb': unified_kb,
            'file': 'merge_core_junctions.npy',
        },
        'models': [
            {
                'name': mj.name,
                'category': mj.category,
                'n_junctions': mj.n_junctions,
                'junction_kb': mj.junction_kb,
                'n_params': mj.n_params,
                'size_gb': mj.size_gb,
                'junction_file': f"model_junctions/{mj.name}_junctions.npy",
            }
            for mj in all_junctions
        ],
        'specialists': specialists,
        'stats': {
            'total_models': len(all_junctions),
            'total_params': total_params,
            'total_original_gb': total_original,
            'total_individual_junctions': total_individual,
            'unified_junctions': len(unified),
            'overlap_percentage': (1 - len(unified)/total_individual) * 100,
            'merge_core_kb': unified_kb,
        },
    }
    
    manifest_path = os.path.join(OUTPUT_DIR, "harmonic_stack.json")
    with open(manifest_path, 'w') as f:
        json.dump(manifest, f, indent=2)
    log.info(f"Manifest: {manifest_path}")
    
    # ─────────────────────────────────────────────────────────────────────────
    # FINAL REPORT
    # ─────────────────────────────────────────────────────────────────────────
    log.section("HARMONIC STACK COMPLETE")
    
    print()
    print("  β”Œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”")
    print("  β”‚                      FINAL REPORT                          β”‚")
    print("  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€")
    print(f"  β”‚  Models processed:        {len(all_junctions):>6}                         β”‚")
    print(f"  β”‚  Total parameters:        {total_params/1e9:>6.1f} B                       β”‚")
    print(f"  β”‚  Original size:           {total_original:>6.1f} GB                      β”‚")
    print("  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€")
    print(f"  β”‚  Individual junctions:    {total_individual:>6,}                        β”‚")
    print(f"  β”‚  Unified junctions:       {len(unified):>6,}                        β”‚")
    print(f"  β”‚  Junction overlap:        {(1-len(unified)/total_individual)*100:>6.1f}%                       β”‚")
    print("  β”œβ”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€")
    print(f"  β”‚  MERGE CORE SIZE:         {unified_kb:>6.1f} KB                      β”‚")
    print("  β””β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”€β”˜")
    print()
    print(f"  Original: {total_original:.1f} GB  β†’  Merge Core: {unified_kb:.1f} KB")
    print(f"  Compression: {total_original * 1024 * 1024 / unified_kb:,.0f}x")
    print()
    print("  Output: " + OUTPUT_DIR)
    print()


if __name__ == "__main__":
    main()