File size: 11,471 Bytes
7cdb0ca |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 |
"""
Sequence Prediction Dataset Generator.
Generates image pairs for sequence prediction tasks with various
mathematical sequences (arithmetic, geometric, fibonacci, etc.)
"""
import json
import random
from pathlib import Path
from typing import Callable
import matplotlib.pyplot as plt
import matplotlib.patches as patches
# ============== Sequence Generators ==============
def arithmetic_seq(start: int, diff: int, length: int = 4) -> list[int]:
"""Arithmetic sequence: a, a+d, a+2d, ..."""
return [start + i * diff for i in range(length)]
def geometric_seq(start: int, ratio: int, length: int = 4) -> list[int]:
"""Geometric sequence: a, a*r, a*r^2, ..."""
return [start * (ratio ** i) for i in range(length)]
def square_seq(start: int, length: int = 4) -> list[int]:
"""Square numbers: n^2, (n+1)^2, ..."""
return [(start + i) ** 2 for i in range(length)]
def cube_seq(start: int, length: int = 4) -> list[int]:
"""Cube numbers: n^3, (n+1)^3, ..."""
return [(start + i) ** 3 for i in range(length)]
def triangular_seq(start: int, length: int = 4) -> list[int]:
"""Triangular numbers: n(n+1)/2"""
return [(start + i) * (start + i + 1) // 2 for i in range(length)]
def fibonacci_like_seq(a: int, b: int, length: int = 4) -> list[int]:
"""Fibonacci-like: a, b, a+b, a+2b, ..."""
seq = [a, b]
for _ in range(length - 2):
seq.append(seq[-1] + seq[-2])
return seq[:length]
def prime_seq(start_idx: int, length: int = 4) -> list[int]:
"""Prime numbers starting from index."""
primes = [2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47]
return primes[start_idx:start_idx + length]
def power_of_two_seq(start: int, length: int = 4) -> list[int]:
"""Powers of 2: 2^n, 2^(n+1), ..."""
return [2 ** (start + i) for i in range(length)]
def factorial_seq(start: int, length: int = 4) -> list[int]:
"""Factorial sequence: n!, (n+1)!, ..."""
from math import factorial
return [factorial(start + i) for i in range(length)]
# ============== Sequence Factory ==============
SEQUENCE_TYPES = {
"arithmetic": lambda rng: arithmetic_seq(
rng.randint(1, 20), rng.randint(1, 10)
),
"arithmetic_neg": lambda rng: arithmetic_seq(
rng.randint(20, 50), -rng.randint(1, 5)
),
"geometric_2": lambda rng: geometric_seq(
rng.randint(1, 5), 2
),
"geometric_3": lambda rng: geometric_seq(
rng.randint(1, 3), 3
),
"square": lambda rng: square_seq(rng.randint(1, 10)),
"cube": lambda rng: cube_seq(rng.randint(1, 5)),
"triangular": lambda rng: triangular_seq(rng.randint(1, 10)),
"fibonacci": lambda rng: fibonacci_like_seq(
rng.randint(1, 5), rng.randint(1, 5)
),
"prime": lambda rng: prime_seq(rng.randint(0, 10)),
"power_of_2": lambda rng: power_of_two_seq(rng.randint(0, 6)),
}
def generate_sequence_pair(seq: list[int]) -> tuple[list, list]:
"""
Generate a pair of sequences for the task.
Returns:
(partial, complete): partial has last element as "", complete is full.
"""
partial = seq[:-1] + [""]
return partial, seq
# ============== Image Generation ==============
def round_to_multiple(x: int, multiple: int = 16) -> int:
"""Round x up to nearest multiple."""
return ((x + multiple - 1) // multiple) * multiple
def create_number_grid(
numbers: list,
save_path: str,
height: int = 224,
width: int = 896,
fontsize: int = 48,
size_multiple: int = 16,
) -> None:
"""
Create a 1xN grid image with numbers in each cell.
Args:
numbers: List of numbers/strings to display.
save_path: Output file path.
height: Target height in pixels (will be rounded to size_multiple).
width: Target width in pixels (will be rounded to size_multiple).
fontsize: Font size for the numbers.
size_multiple: Ensure dimensions are multiples of this (default 16).
"""
from PIL import Image
n = len(numbers)
# Ensure dimensions are multiples of size_multiple
width = round_to_multiple(width, size_multiple)
height = round_to_multiple(height, size_multiple)
# Use fixed DPI and calculate figsize
dpi = 100
fig_width = width / dpi
fig_height = height / dpi
fig, ax = plt.subplots(figsize=(fig_width, fig_height), dpi=dpi)
fig.subplots_adjust(left=0, right=1, top=1, bottom=0)
for i, num in enumerate(numbers):
rect = patches.Rectangle(
(i, 0), 1, 1, linewidth=2,
edgecolor='black', facecolor='white'
)
ax.add_patch(rect)
ax.text(
i + 0.5, 0.5, str(num), fontsize=fontsize,
ha='center', va='center', fontweight='bold'
)
ax.set_xlim(0, n)
ax.set_ylim(0, 1)
ax.set_aspect('equal')
ax.axis('off')
# Save with exact pixel dimensions
fig.savefig(save_path, dpi=dpi, facecolor='white', edgecolor='none')
plt.close(fig)
# Final resize to ensure exact dimensions (16 multiples)
img = Image.open(save_path)
if img.size != (width, height):
img = img.resize((width, height), Image.Resampling.LANCZOS)
img.save(save_path)
# ============== Dataset Generation ==============
class SequenceDatasetGenerator:
"""Generate sequence prediction dataset with train/test splits."""
def __init__(
self,
output_dir: str,
seed: int = 42,
num_pairs: tuple[int, int] = (2, 3),
seq_types: list[str] | None = None,
image_height: int = 224,
image_width: int = 896,
fontsize: int = 48,
):
"""
Args:
output_dir: Directory to save the dataset.
seed: Random seed for reproducibility.
num_pairs: Range of pairs per sample (min, max inclusive).
seq_types: List of sequence types to use (None = all).
image_height: Image height in pixels (rounded to 16).
image_width: Image width in pixels (rounded to 16).
fontsize: Font size for numbers.
"""
self.output_dir = Path(output_dir)
self.rng = random.Random(seed)
self.num_pairs = num_pairs
self.seq_types = seq_types or list(SEQUENCE_TYPES.keys())
self.image_height = round_to_multiple(image_height, 16)
self.image_width = round_to_multiple(image_width, 16)
self.fontsize = fontsize
# Create directories
for split in ["train", "test"]:
(self.output_dir / split / "images").mkdir(parents=True, exist_ok=True)
def _generate_sample(self, sample_id: int) -> dict:
"""Generate a single sample with multiple sequence pairs."""
num_pairs = self.rng.randint(*self.num_pairs)
seq_type = self.rng.choice(self.seq_types)
# Generate base sequence and subsequent ones
base_seq = SEQUENCE_TYPES[seq_type](self.rng)
pairs = []
for i in range(num_pairs):
# Shift sequence for each pair
if seq_type.startswith("arithmetic"):
diff = base_seq[1] - base_seq[0]
seq = [x + i * diff for x in base_seq]
elif seq_type.startswith("geometric"):
ratio = base_seq[1] // base_seq[0] if base_seq[0] != 0 else 2
seq = [x * (ratio ** i) for x in base_seq]
else:
# For other types, regenerate with offset
seq = [x + i for x in base_seq]
partial, complete = generate_sequence_pair(seq)
pairs.append({
"partial": partial,
"complete": complete,
"answer": complete[-1],
})
return {
"id": sample_id,
"seq_type": seq_type,
"num_pairs": num_pairs,
"pairs": pairs,
}
def _save_sample_images(
self, sample: dict, split: str, include_last_answer: bool = True
) -> dict:
"""Save images for a sample and return metadata."""
sample_id = sample["id"]
image_dir = self.output_dir / split / "images"
images = []
img_idx = 0
for i, pair in enumerate(sample["pairs"]):
# Always save partial (query) image
partial_path = f"{sample_id:05d}_{img_idx}.png"
create_number_grid(
pair["partial"], image_dir / partial_path,
height=self.image_height, width=self.image_width,
fontsize=self.fontsize,
)
images.append(partial_path)
img_idx += 1
# Save complete image based on split logic
is_last = (i == sample["num_pairs"] - 1)
if include_last_answer or not is_last:
complete_path = f"{sample_id:05d}_{img_idx}.png"
create_number_grid(
pair["complete"], image_dir / complete_path,
height=self.image_height, width=self.image_width,
fontsize=self.fontsize,
)
images.append(complete_path)
img_idx += 1
return {
"id": sample_id,
"seq_type": sample["seq_type"],
"num_pairs": sample["num_pairs"],
"images": images,
"answer": sample["pairs"][-1]["answer"], # Last image's answer
"sequences": [p["complete"] for p in sample["pairs"]],
}
def generate(self, num_train: int, num_test: int) -> None:
"""
Generate the full dataset.
Args:
num_train: Number of training samples.
num_test: Number of test samples.
"""
train_meta, test_meta = [], []
# Generate training samples (all pairs complete)
print(f"Generating {num_train} training samples...")
for i in range(num_train):
sample = self._generate_sample(i)
meta = self._save_sample_images(sample, "train", include_last_answer=True)
train_meta.append(meta)
if (i + 1) % 50 == 0:
print(f" Train: {i + 1}/{num_train}")
# Generate test samples (last answer hidden)
print(f"Generating {num_test} test samples...")
for i in range(num_test):
sample = self._generate_sample(num_train + i)
meta = self._save_sample_images(sample, "test", include_last_answer=False)
test_meta.append(meta)
if (i + 1) % 50 == 0:
print(f" Test: {i + 1}/{num_test}")
# Save metadata
with open(self.output_dir / "train.json", "w") as f:
json.dump(train_meta, f, indent=2)
with open(self.output_dir / "test.json", "w") as f:
json.dump(test_meta, f, indent=2)
print(f"\nDataset saved to {self.output_dir}")
print(f" Train: {num_train} samples")
print(f" Test: {num_test} samples")
print(f" Image size: {self.image_width}x{self.image_height}")
print(f" Sequence types: {self.seq_types}")
if __name__ == "__main__":
generator = SequenceDatasetGenerator(
output_dir="/home/claude/sequence_dataset",
seed=42,
num_pairs=(2, 3),
)
generator.generate(num_train=100, num_test=20) |