File size: 23,828 Bytes
2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 2e9398f 2c25848 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 |
"""
Maze Video Dataset Generator — generates maze puzzle images and solution videos
with checkpoint/resume support, train/test splitting, and JSONL metadata.
Includes an ``eval`` subcommand that takes a directory of result videos,
extracts the last frame from each, parses the red path, and verifies it
against the ground-truth maze text files.
Usage:
# Generate
python maze_video_gen.py generate --output-dir maze --sizes 8 16 32 \
--num-per-size 100 500 1000 --min-path-ratio 0.3 \
--n-start 5 --m-end 5 --frames 50 --fps 10 --seed 42
# Evaluate result videos
python maze_video_gen.py eval result_videos/ --text-dir maze/texts
# Verify a pre-extracted JSON
python maze_video_gen.py verify results.json --text-dir maze/texts
"""
import json
import csv
import hashlib
import random
import re
import argparse
from dataclasses import dataclass, asdict
from pathlib import Path
from typing import Dict, List, Optional
import cv2
import numpy as np
from tqdm import tqdm
from maze_processor import MazeProcessor
# ==================== Checkpoint Management ====================
@dataclass
class GenerationState:
"""Tracks generation progress for checkpoint/resume."""
params_hash: str
size_progress: Dict[int, int]
seen_fingerprints: List[str]
all_samples: List[Dict]
completed: bool = False
def to_dict(self) -> Dict:
return asdict(self)
@classmethod
def from_dict(cls, d: Dict) -> "GenerationState":
return cls(**d)
def _params_hash(params: Dict) -> str:
"""Deterministic hash of generation parameters (excluding output_dir)."""
key = {k: v for k, v in params.items() if k != "output_dir"}
return hashlib.md5(json.dumps(key, sort_keys=True).encode()).hexdigest()[:12]
def load_checkpoint(output_dir: Path, params: Dict) -> Optional[GenerationState]:
"""Load checkpoint if it exists and parameters match."""
meta = output_dir / "metadata.json"
if not meta.exists():
return None
with open(meta) as f:
data = json.load(f)
state = GenerationState.from_dict(data["state"])
expected = _params_hash(params)
if state.params_hash != expected:
print(f"⚠️ Parameters changed ({state.params_hash} → {expected}), starting fresh")
return None
if state.completed:
print("✓ Generation already completed")
return state
done = sum(state.size_progress.values())
print(f"✓ Resuming from checkpoint: {done} mazes generated")
return state
def save_checkpoint(output_dir: Path, state: GenerationState, params: Dict):
"""Atomically write checkpoint to metadata.json."""
meta = output_dir / "metadata.json"
tmp = meta.with_suffix(".tmp")
with open(tmp, "w") as f:
json.dump({"params": params, "state": state.to_dict()}, f, indent=2)
tmp.rename(meta)
# ==================== Video I/O ====================
def save_video_cv2(frames: list, path: str, fps: int = 10):
"""Save list of PIL Images as an mp4 video."""
first = np.array(frames[0])
h, w = first.shape[:2]
writer = cv2.VideoWriter(
str(path), cv2.VideoWriter_fourcc(*"mp4v"), fps, (w, h)
)
for frame in frames:
writer.write(cv2.cvtColor(np.array(frame), cv2.COLOR_RGB2BGR))
writer.release()
def extract_last_frame(video_path: str) -> Optional[np.ndarray]:
"""
Extract the last frame from a video file as an RGB numpy array.
Returns:
(H, W, 3) uint8 RGB array, or None on failure.
"""
cap = cv2.VideoCapture(str(video_path))
if not cap.isOpened():
return None
total = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
if total > 0:
cap.set(cv2.CAP_PROP_POS_FRAMES, total - 1)
ret, frame = cap.read()
cap.release()
if not ret or frame is None:
return None
return cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# ==================== Normalisation Helpers ====================
def _normalise_list(val, sizes, name="parameter"):
"""Broadcast a single int to a list, or validate list length."""
if isinstance(val, int):
return [val] * len(sizes)
if len(val) != len(sizes):
raise ValueError(f"{name} length ({len(val)}) != sizes length ({len(sizes)})")
return list(val)
# ==================== Core Dataset Generation ====================
def generate_dataset(
output_dir: str = "maze",
sizes: List[int] = [8, 16, 32],
num_per_size: list = [100, 500, 1000],
min_path_ratio: float = 0.3,
img_size: int = 1024,
prompt: str = "Draw a continuous red line from the yellow dot to the blue dot, avoiding all walls.",
train_ratio: float = 0.9,
n_start: int = 5,
m_end: int = 5,
frames: Optional[int] = None,
fps: int = 10,
seed: int = 42,
checkpoint_interval: int = 50,
):
"""
Generate maze video dataset with checkpoint/resume support.
The *frames* parameter controls content frames per video:
- None → one content frame per path step (variable length)
- N > 0 → exactly N content frames (slow-mo / fast-fwd as needed)
Directory layout::
output_dir/
images/ — puzzle PNG (no solution line)
videos/ — solution MP4 (progressive red line)
texts/ — maze text files (bitmask format)
train.jsonl / test.jsonl
train.csv / test.csv
path.json — UDRL answer key
metadata.json — checkpoint state
"""
params = {
"sizes": sizes, "num_per_size": num_per_size,
"min_path_ratio": min_path_ratio, "img_size": img_size,
"prompt": prompt, "train_ratio": train_ratio,
"n_start": n_start, "m_end": m_end, "frames": frames,
"fps": fps, "seed": seed,
}
out = Path(output_dir)
img_dir = out / "images"
vid_dir = out / "videos"
txt_dir = out / "texts"
for d in (img_dir, vid_dir, txt_dir):
d.mkdir(parents=True, exist_ok=True)
state = load_checkpoint(out, params)
if state and state.completed:
return
num_list = _normalise_list(
num_per_size[0] if len(num_per_size) == 1 else num_per_size,
sizes, "num_per_size",
)
max_puzzles = max(num_list)
num_w = len(str(max_puzzles))
proc = MazeProcessor(img_size=img_size)
if state is None:
random.seed(seed)
state = GenerationState(
params_hash=_params_hash(params),
size_progress={sz: 0 for sz in sizes},
seen_fingerprints=[],
all_samples=[],
)
print(f"Starting fresh generation: sizes={sizes}, counts={num_list}")
print(f" frames={'auto (1 per step)' if frames is None else frames}, "
f"n_start={n_start}, m_end={m_end}, fps={fps}")
else:
random.seed(seed)
for _ in range(sum(state.size_progress.values()) * 10):
random.random()
seen = set(state.seen_fingerprints)
all_samples = list(state.all_samples)
progress = {int(k): v for k, v in state.size_progress.items()}
since_ckpt = 0
total_target = sum(num_list)
total_done = sum(progress.values())
with tqdm(total=total_target, initial=total_done, desc="Total", unit="maze") as pbar:
for maze_size, target in zip(sizes, num_list):
generated = progress.get(maze_size, 0)
if generated >= target:
continue
min_len = max(1, int(maze_size * maze_size * min_path_ratio))
max_attempts = (target - generated) * 20
with tqdm(
total=target, initial=generated, desc=f"Size {maze_size:3d}",
unit="maze", leave=False,
) as pbar_sz:
for _ in range(max_attempts):
if generated >= target:
break
try:
grid, start, end, path = proc.generate(
maze_size, min_path_len=min_len
)
except RuntimeError:
continue
fp = proc.fingerprint(grid, start, end)
if fp in seen:
continue
seen.add(fp)
idx = generated
base = f"size{maze_size}_{idx:0{num_w}d}"
img_name = f"{base}.png"
vid_name = f"{base}.mp4"
txt_name = f"{base}.txt"
puzzle_img = proc.render(grid, start, end)
puzzle_img.save(str(img_dir / img_name))
vid_frames = proc.generate_video_frames(
grid, start, end, path,
n_start=n_start, m_end=m_end, frames=frames,
)
save_video_cv2(vid_frames, str(vid_dir / vid_name), fps=fps)
proc.save_text(str(txt_dir / txt_name), grid, start, end)
udrl = proc.path_to_udrl(path)
all_samples.append({
"prompt": prompt,
"image": img_name,
"video": vid_name,
"text": txt_name,
"maze_size": maze_size,
"start": list(start),
"end": list(end),
"path_udrl": udrl,
"path_length": len(path),
"frame_count": len(vid_frames),
})
generated += 1
progress[maze_size] = generated
since_ckpt += 1
pbar_sz.update(1)
pbar.update(1)
if since_ckpt >= checkpoint_interval:
state.size_progress = progress
state.seen_fingerprints = list(seen)
state.all_samples = all_samples
save_checkpoint(out, state, params)
since_ckpt = 0
tqdm.write(
f"Size {maze_size}: {generated} mazes, "
f"{sum(1 for s in all_samples if s['maze_size'] == maze_size)} samples"
)
# ==================== Final outputs ====================
path_answers = {s["image"]: s["path_udrl"] for s in all_samples}
with open(out / "path.json", "w") as f:
json.dump(dict(sorted(path_answers.items())), f, indent=4)
# Stratified split: ensure each size is proportionally represented in test set
random.seed(seed + 1)
by_size: Dict[int, List[Dict]] = {}
for s in all_samples:
by_size.setdefault(s["maze_size"], []).append(s)
train_samples, test_samples = [], []
for sz in sorted(by_size):
group = by_size[sz]
random.shuffle(group)
sz_split = int(len(group) * train_ratio)
train_samples.extend(group[:sz_split])
test_samples.extend(group[sz_split:])
random.shuffle(train_samples)
random.shuffle(test_samples)
split = len(train_samples)
def _write_jsonl(samples, path):
with open(path, "w") as f:
for s in samples:
f.write(json.dumps(s) + "\n")
_write_jsonl(train_samples, out / "train.jsonl")
_write_jsonl(test_samples, out / "test.jsonl")
for name, samples in [("train", train_samples), ("test", test_samples)]:
with open(out / f"{name}.csv", "w", newline="", encoding="utf-8") as f:
writer = csv.writer(f)
writer.writerow(["input_image", "video", "prompt"])
for s in samples:
writer.writerow([
f"images/{s['image']}", f"videos/{s['video']}", s["prompt"]
])
state.size_progress = progress
state.seen_fingerprints = list(seen)
state.all_samples = all_samples
state.completed = True
save_checkpoint(out, state, params)
print(f"\n✓ Dataset complete: {out}/")
print(f" Sizes: {sizes}")
print(f" Mazes: {len(all_samples)}")
print(f" Train: {split}, Test: {len(all_samples) - split}")
lengths = [s["path_length"] for s in all_samples]
fcounts = [s["frame_count"] for s in all_samples]
print(f" Path lengths: avg={np.mean(lengths):.1f}, "
f"min={min(lengths)}, max={max(lengths)}")
print(f" Frame counts: avg={np.mean(fcounts):.1f}, "
f"min={min(fcounts)}, max={max(fcounts)}")
# ==================== Eval: Video → Last Frame → Verify ====================
def eval_videos(
video_dir: str,
text_dir: str,
output_json: Optional[str] = None,
gt_json: Optional[str] = None,
strict: bool = True,
):
"""
Evaluate a directory of result videos against ground-truth mazes.
Pipeline per video:
1. Extract last frame from .mp4
2. Detect red path via pixel analysis
3. Convert to UDRL action string
4. Verify against maze .txt (wall-respecting walk from start to end)
Matching convention:
Video ``<stem>.mp4`` → Text ``<stem>.txt`` in *text_dir*.
Common stems: ``size8_000``, ``size16_042``, etc.
Args:
video_dir: Directory containing result .mp4 files.
text_dir: Directory containing ground-truth maze .txt files.
output_json: Path to save extracted paths as JSON (default: video_dir/0_result.json).
gt_json: Optional ground-truth answer JSON for accuracy by path length.
"""
proc = MazeProcessor()
vid_root = Path(video_dir)
txt_root = Path(text_dir)
if output_json is None:
output_json = str(vid_root / "0_result.json")
# Collect videos
videos = sorted(
vid_root.glob("*.mp4"),
key=lambda p: [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", p.stem)],
)
if not videos:
print(f"No .mp4 files found in {vid_root}")
return
print(f"Found {len(videos)} result videos in {vid_root}")
print(f"Text dir: {txt_root}")
# --- Phase 1: Extract paths from last frames ---
extracted: Dict[str, str] = {}
missing_txt = 0
missing_frame = 0
for vpath in tqdm(videos, desc="Extracting paths"):
stem = vpath.stem # e.g. "size8_000"
stem = stem.replace('_gen', '') # Remove `_gen` suffix
txt_path = txt_root / f"{stem}.txt"
if not txt_path.exists():
missing_txt += 1
continue
maze = proc.load_text(str(txt_path))
if maze is None:
missing_txt += 1
continue
last_frame = extract_last_frame(str(vpath))
if last_frame is None:
missing_frame += 1
continue
udrl = proc.extract_path_from_pixels(
last_frame,
grid_raw=maze["grid_raw"],
size=maze["size"],
start=maze["start"],
)
extracted[f"{stem}.png"] = udrl # keyed by image name for consistency
# Save extracted paths
with open(output_json, "w", encoding="utf-8") as f:
json.dump(extracted, f, indent=4)
print(f"\nExtracted paths saved to: {output_json}")
# --- Phase 2: Verify ---
correct = 0
total_valid = 0
correctly_solved: List[Dict] = []
for name, udrl in extracted.items():
stem = name.replace(".png", "")
txt_path = txt_root / f"{stem}.txt"
maze = proc.load_text(str(txt_path))
if maze is None:
continue
total_valid += 1
if proc.verify_path(maze["grid"], maze["start"], maze["end"], udrl, strict=strict):
correct += 1
correctly_solved.append({"name": name, "length": len(udrl)})
acc = (correct / total_valid * 100) if total_valid else 0
print(f"\n{'=' * 50}")
print("Evaluation Summary")
print(f"{'=' * 50}")
print(f"Total Videos : {len(videos)}")
print(f"Missing .txt : {missing_txt}")
print(f"Failed Frame Read : {missing_frame}")
print(f"Evaluated : {total_valid}")
print(f"Correctly Solved : {correct}")
print(f"Accuracy : {acc:.2f}%")
print(f"{'-' * 50}")
# Breakdown by maze size
size_stats: Dict[int, Dict[str, int]] = {}
for name, udrl in extracted.items():
stem = name.replace(".png", "")
txt_path = txt_root / f"{stem}.txt"
maze = proc.load_text(str(txt_path))
if maze is None:
continue
sz = maze["size"]
if sz not in size_stats:
size_stats[sz] = {"total": 0, "correct": 0}
size_stats[sz]["total"] += 1
if proc.verify_path(maze["grid"], maze["start"], maze["end"], udrl, strict=strict):
size_stats[sz]["correct"] += 1
if size_stats:
print("\nAccuracy by maze size:")
for sz in sorted(size_stats):
s = size_stats[sz]
sz_acc = s["correct"] / s["total"] * 100 if s["total"] else 0
print(f" Size {sz:3d}: {s['correct']:4d}/{s['total']:4d} ({sz_acc:.2f}%)")
# Top longest correct
correctly_solved.sort(key=lambda x: x["length"], reverse=True)
if correctly_solved:
print(f"\nTop 3 Longest Correct Paths:")
for i, item in enumerate(correctly_solved[:3]):
print(f" {i+1}. {item['name']} (length: {item['length']})")
# Optional: compare with ground-truth JSON for path-length-binned accuracy
if gt_json:
_compare_with_gt(extracted, gt_json, txt_root, proc, strict=strict)
print(f"{'=' * 50}")
def _compare_with_gt(
extracted: Dict[str, str],
gt_json_path: str,
txt_root: Path,
proc: MazeProcessor,
strict: bool = True,
):
"""Print accuracy binned by ground-truth path length."""
try:
with open(gt_json_path) as f:
gt = json.load(f)
except Exception:
print(f" Warning: could not load ground-truth JSON: {gt_json_path}")
return
bins: Dict[str, Dict[str, int]] = {} # "10-19" -> {total, correct}
for name, pred_udrl in extracted.items():
if name not in gt:
continue
gt_udrl = gt[name]
gt_len = len(gt_udrl)
# Bin by path length (decades)
lo = (gt_len // 10) * 10
hi = lo + 9
label = f"{lo:3d}-{hi:3d}"
if label not in bins:
bins[label] = {"total": 0, "correct": 0}
bins[label]["total"] += 1
stem = name.replace(".png", "")
maze = proc.load_text(str(txt_root / f"{stem}.txt"))
if maze and proc.verify_path(maze["grid"], maze["start"], maze["end"], pred_udrl, strict=strict):
bins[label]["correct"] += 1
if bins:
print("\nAccuracy by GT path length:")
for label in sorted(bins):
b = bins[label]
b_acc = b["correct"] / b["total"] * 100 if b["total"] else 0
print(f" Length {label}: {b['correct']:4d}/{b['total']:4d} ({b_acc:.2f}%)")
# ==================== Verify: Pre-extracted JSON ====================
def verify_results(json_file: str, text_dir: str, strict: bool = True):
"""
Verify pre-extracted UDRL paths (from a JSON file) against maze .txt files.
Args:
json_file: Path to JSON with {name: udrl_string} predictions.
text_dir: Directory containing maze .txt files.
"""
proc = MazeProcessor()
json_path = Path(json_file)
txt_root = Path(text_dir)
with open(json_path) as f:
solutions = json.load(f)
correct = skipped = valid = 0
for name, udrl in solutions.items():
clean = name.replace(".png", "")
txt_path = txt_root / f"{clean}.txt"
maze = proc.load_text(str(txt_path))
if maze is None:
skipped += 1
continue
valid += 1
if proc.verify_path(maze["grid"], maze["start"], maze["end"], udrl, strict=strict):
correct += 1
acc = (correct / valid * 100) if valid else 0
print(f"\n{'='*40}")
print(f"Verification: {correct}/{valid} correct ({acc:.2f}%)")
if skipped:
print(f"Skipped: {skipped}")
print(f"{'='*40}")
# ==================== CLI ====================
def parse_args():
p = argparse.ArgumentParser(
description="Maze video dataset: generate, eval, verify"
)
sub = p.add_subparsers(dest="command", help="Sub-command")
# --- generate ---
gen = sub.add_parser("generate", help="Generate dataset")
gen.add_argument("--output-dir", type=str, default="maze")
gen.add_argument("--sizes", type=int, nargs="+", default=[8, 12, 16, 32])
gen.add_argument("--num-per-size", type=int, nargs="+", default=[1000, 1000, 1000, 2000])
gen.add_argument("--min-path-ratio", type=float, default=0.1,
help="Min path length as fraction of size²")
gen.add_argument("--img-size", type=int, default=1024)
gen.add_argument("--prompt", type=str,
default="Draw a continuous red line from the yellow dot "
"to the blue dot, avoiding all walls.")
gen.add_argument("--train-ratio", type=float, default=0.9)
gen.add_argument("--n-start", type=int, default=2,
help="Hold frames at video start (blank puzzle)")
gen.add_argument("--m-end", type=int, default=3,
help="Hold frames at video end (completed solution)")
gen.add_argument("--frames", type=int, default=None,
help="Content frames per video (None=auto 1 per step)")
gen.add_argument("--fps", type=int, default=10)
gen.add_argument("--seed", type=int, default=42)
gen.add_argument("--checkpoint-interval", type=int, default=50)
# --- eval ---
ev = sub.add_parser("eval",
help="Evaluate result videos (last frame → extract → verify)")
ev.add_argument("video_dir", type=str,
help="Directory containing result .mp4 files")
ev.add_argument("--text-dir", type=str, required=True,
help="Directory with ground-truth maze .txt files")
ev.add_argument("--output-json", type=str, default=None,
help="Output JSON for extracted paths (default: video_dir/0_result.json)")
ev.add_argument("--gt-json", type=str, default=None,
help="Optional ground-truth path.json for length-binned accuracy")
ev.add_argument("--strict", action="store_true",
help="Strict verification (exact UDRL match) vs leniency on no-op moves")
# --- verify ---
ver = sub.add_parser("verify", help="Verify a pre-extracted JSON of UDRL paths")
ver.add_argument("json_file", type=str)
ver.add_argument("--text-dir", type=str, required=True,
help="Directory with maze .txt files")
ver.add_argument("--strict", action="store_true",
help="Strict verification (exact UDRL match) vs leniency on no-op moves")
return p.parse_args()
if __name__ == "__main__":
args = parse_args()
if args.command == "generate":
kwargs = {k: v for k, v in vars(args).items() if k != "command"}
generate_dataset(**kwargs)
elif args.command == "eval":
eval_videos(
video_dir=args.video_dir,
text_dir=args.text_dir,
output_json=args.output_json,
gt_json=args.gt_json,
strict=args.strict,
)
elif args.command == "verify":
verify_results(args.json_file, args.text_dir, strict=args.strict)
else:
print("Usage: python maze_video_gen.py {generate|eval|verify} [options]")
print(" python maze_video_gen.py generate --help")
print(" python maze_video_gen.py eval --help")
print(" python maze_video_gen.py verify --help") |