Upload convert_fsdp_to_hf.py
Browse files- convert_fsdp_to_hf.py +39 -0
convert_fsdp_to_hf.py
ADDED
|
@@ -0,0 +1,39 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
# encoding: utf-8
|
| 3 |
+
from transformers import AutoConfig, AutoModelForCausalLM, AutoTokenizer
|
| 4 |
+
import torch
|
| 5 |
+
import fire
|
| 6 |
+
from glob import glob
|
| 7 |
+
from collections import defaultdict
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
def main(fsdp_checkpoint_path, huggingface_model_path, output_path):
|
| 11 |
+
state_dict = defaultdict(list)
|
| 12 |
+
|
| 13 |
+
world_size = 8
|
| 14 |
+
for rank in range(world_size):
|
| 15 |
+
filepath = f"{fsdp_checkpoint_path}/model_world_size_{world_size}_rank_{rank}.pt"
|
| 16 |
+
print('loading', filepath)
|
| 17 |
+
this_state_dict = torch.load(filepath)
|
| 18 |
+
for key, value in this_state_dict.items():
|
| 19 |
+
state_dict[key].append(value.to_local())
|
| 20 |
+
|
| 21 |
+
for key in state_dict:
|
| 22 |
+
state_dict[key] = torch.cat(state_dict[key], dim=0)
|
| 23 |
+
|
| 24 |
+
config = AutoConfig.from_pretrained(huggingface_model_path)
|
| 25 |
+
model = AutoModelForCausalLM.from_config(config)
|
| 26 |
+
model.load_state_dict(state_dict)
|
| 27 |
+
|
| 28 |
+
#for filepath in glob(f'{fsdp_checkpoint_path}/model_*.pt'):
|
| 29 |
+
# part_state_dict = torch.load(filepath)
|
| 30 |
+
# model.load_state_dict(part_state_dict)
|
| 31 |
+
|
| 32 |
+
model.save_pretrained(output_path)
|
| 33 |
+
|
| 34 |
+
tokenizer = AutoTokenizer.from_pretrained(huggingface_model_path)
|
| 35 |
+
tokenizer.save_pretrained(output_path)
|
| 36 |
+
|
| 37 |
+
|
| 38 |
+
if __name__ == "__main__":
|
| 39 |
+
fire.Fire(main)
|