File size: 8,434 Bytes
43d4b71 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
from vllm import LLM, SamplingParams
import argparse
import json
import os
import time
import datetime
def setup_model(model_path, tensor_parallel_size=None, dtype="bfloat16", gpu_memory_utilization=0.85):
"""
Initialize the fine-tuned Qwen-2.5-7B model from a local path with explicit GPU configuration.
Args:
model_path: Path to the directory containing the trained model
tensor_parallel_size: Number of GPUs to use for tensor parallelism (None means auto-detect)
dtype: Data type for model weights (bfloat16, float16, or float32)
gpu_memory_utilization: Fraction of GPU memory to use (0.0 to 1.0)
"""
print(f"Loading fine-tuned Qwen model from: {model_path}")
print(f"GPU configuration: tensor_parallel_size={tensor_parallel_size}, dtype={dtype}, "
f"gpu_memory_utilization={gpu_memory_utilization}")
# Initialize the model with VLLM using GPU settings
llm = LLM(
model=model_path,
trust_remote_code=True,
tensor_parallel_size=tensor_parallel_size, # Number of GPUs to use
dtype=dtype, # Data type for model weights
gpu_memory_utilization=gpu_memory_utilization, # Memory usage per GPU
enforce_eager=False, # Set to True if you encounter CUDA issues
# max_model_len=8192, # Uncomment if you need longer context
)
print("Model loaded successfully!")
return llm
def generate_response(llm, prompt, temperature=0.7, max_tokens=512, top_p=0.9):
"""Generate a response for a given prompt."""
sampling_params = SamplingParams(
temperature=temperature,
top_p=top_p,
max_tokens=max_tokens
)
outputs = llm.generate([prompt], sampling_params)
return outputs[0].outputs[0].text
def chat_completion(llm, messages, temperature=0.7, max_tokens=512):
"""Generate a chat completion from messages."""
sampling_params = SamplingParams(
temperature=temperature,
top_p=0.9,
max_tokens=max_tokens
)
# Convert messages to a prompt using the model's chat template
tokenizer = llm.get_tokenizer()
if hasattr(tokenizer, "apply_chat_template"):
# For newer transformers versions
prompt = tokenizer.apply_chat_template(
messages,
tokenize=False,
add_generation_prompt=True
)
else:
# Fallback for models without chat template
prompt = format_messages_manually(messages)
outputs = llm.generate([prompt], sampling_params)
return outputs[0].outputs[0].text
def format_messages_manually(messages):
"""Format messages manually if chat template is not available."""
formatted_prompt = ""
for message in messages:
role = message["role"]
content = message["content"]
if role == "system":
formatted_prompt += f"<|im_start|>system\n{content}<|im_end|>\n"
elif role == "user":
formatted_prompt += f"<|im_start|>user\n{content}<|im_end|>\n"
elif role == "assistant":
formatted_prompt += f"<|im_start|>assistant\n{content}<|im_end|>\n"
formatted_prompt += "<|im_start|>assistant\n"
return formatted_prompt
def batch_inference(llm, prompts, temperature=0.7, max_tokens=512):
"""Run batch inference on multiple prompts."""
sampling_params = SamplingParams(
temperature=temperature,
top_p=0.9,
max_tokens=max_tokens
)
outputs = llm.generate(prompts, sampling_params)
return [output.outputs[0].text for output in outputs]
def save_to_json(data, output_path=None):
"""Save results to a JSON file."""
if not output_path:
timestamp = datetime.datetime.now().strftime("%Y%m%d_%H%M%S")
output_path = f"qwen_inference_results_{timestamp}.json"
with open(output_path, 'w', encoding='utf-8') as f:
json.dump(data, f, ensure_ascii=False, indent=2)
print(f"Results saved to: {output_path}")
return output_path
def main():
parser = argparse.ArgumentParser(description="GPU inference with fine-tuned Qwen model with JSON output")
parser.add_argument("--model_path", required=True, help="Path to the fine-tuned model directory")
parser.add_argument("--mode", choices=["single", "chat", "batch"], default="single", help="Inference mode")
parser.add_argument("--prompt", help="Prompt for single inference mode")
parser.add_argument("--prompt_file", help="File containing prompts for batch mode (one per line)")
parser.add_argument("--output_file", help="Path to save JSON results (default: auto-generated)")
parser.add_argument("--max_tokens", type=int, default=512, help="Maximum tokens in response")
parser.add_argument("--temperature", type=float, default=0.7, help="Temperature for sampling")
parser.add_argument("--gpu_count", type=int, help="Number of GPUs to use (default: all available)")
parser.add_argument("--dtype", choices=["float16", "bfloat16", "float32"], default="bfloat16", help="Data type for weights")
parser.add_argument("--gpu_memory_utilization", type=float, default=0.85, help="GPU memory utilization (0.0-1.0)")
args = parser.parse_args()
# Initialize the model with specified GPU settings
llm = setup_model(
model_path=args.model_path,
tensor_parallel_size=args.gpu_count,
dtype=args.dtype,
gpu_memory_utilization=args.gpu_memory_utilization
)
results = {}
if args.mode == "single":
if not args.prompt:
args.prompt = input("Enter your prompt: ")
print("\nGenerating response...")
start_time = time.time()
response = generate_response(
llm,
args.prompt,
temperature=args.temperature,
max_tokens=args.max_tokens
)
end_time = time.time()
print(f"\nResponse:\n{response}")
results = {
"mode": "single",
"timestamp": datetime.datetime.now().isoformat(),
"input": args.prompt,
"output": response,
"parameters": {
"temperature": args.temperature,
"max_tokens": args.max_tokens
},
"performance": {
"time_seconds": end_time - start_time
}
}
elif args.mode == "chat":
# For chat mode, we'll save the entire conversation history
messages = [{"role": "system", "content": "You are a helpful AI assistant."}]
results = {
"mode": "chat",
"timestamp": datetime.datetime.now().isoformat(),
"conversation": []
}
print("\nChat mode. Type 'exit' or 'quit' to end the conversation and save to JSON.\n")
while True:
user_input = input("\nYou: ")
if user_input.lower() in ["exit", "quit"]:
print("Ending conversation and saving results...")
break
messages.append({"role": "user", "content": user_input})
start_time = time.time()
response = chat_completion(
llm,
messages,
temperature=args.temperature,
max_tokens=args.max_tokens
)
end_time = time.time()
print(f"\nAssistant: {response}")
messages.append({"role": "assistant", "content": response})
# Add this exchange to results
results["conversation"].append({
"user": user_input,
"assistant": response,
"time_seconds": end_time - start_time
})
elif args.mode == "batch":
if not args.prompt_file:
print("Error: --prompt_file required for batch mode")
return
with open(args.prompt_file, 'r', encoding='utf-8') as f:
prompts = json.load(f)
print(f"Running batch inference on {len(prompts)} prompts...")
inference_results = batch_inference(
llm,
prompts,
temperature=args.temperature,
max_tokens=args.max_tokens
)
with open(args.output_file, "w") as final:
json.dump(inference_results, final)
if __name__ == "__main__":
main() |