#!/usr/bin/python # -*- coding:utf-8 -*- import numpy as np class ClusterResampler: def __init__(self, cluster_path: str) -> None: idx2prob = [] with open(cluster_path, 'r') as fin: for line in fin: cluster_n_member = int(line.strip().split('\t')[-1]) idx2prob.append(1 / cluster_n_member) total = sum(idx2prob) idx2prob = [p / total for p in idx2prob] self.idx2prob = np.array(idx2prob) def __call__(self, n_sample:int, replace: bool=False): idxs = np.random.choice(len(self.idx2prob), size=n_sample, replace=replace, p=self.idx2prob) return idxs