PepGLAD / scripts /data_process /aug_from_monomer.py
Irwiny123's picture
添加PepGLAD初始代码
52007f8
import os
import re
import gzip
import time
import shutil
import argparse
from copy import deepcopy
from tempfile import NamedTemporaryFile
import multiprocessing as mp
import numpy as np
from Bio.PDB import PDBParser,Chain,Model,Structure, PDBIO
from Bio.PDB.DSSP import dssp_dict_from_pdb_file
from Bio.SeqUtils.ProtParam import ProteinAnalysis
from rdkit.Chem.rdMolDescriptors import CalcTPSA
from freesasa import calcBioPDB
from rdkit.Chem import MolFromSmiles
from globals import CACHE_DIR, CONTACT_DIST
from utils.logger import print_log
from utils.file_utils import cnt_num_files, get_filename
from data.mmap_dataset import create_mmap
from data.converter.pdb_to_list_blocks import pdb_to_list_blocks
from data.converter.blocks_interface import blocks_cb_interface, blocks_interface
from .pepbind import clustering
def parse():
parser = argparse.ArgumentParser(description='Filter peptide-like loop from monomers')
parser.add_argument('--database_dir', type=str, required=True,
help='Directory of pdb database processed in monomers')
parser.add_argument('--pdb_dir', type=str, required=True, help='Directory to PDB database')
parser.add_argument('--out_dir', type=str, required=True, help='Output directory')
parser.add_argument('--pocket_th', type=float, default=10.0, help='Threshold for determining pocket')
parser.add_argument('--n_cpu', type=int, default=4, help='Number of CPU to use')
return parser.parse_args()
# Constants
AA3TO1 = {
'ALA':'A', 'VAL':'V', 'PHE':'F', 'PRO':'P', 'MET':'M',
'ILE':'I', 'LEU':'L', 'ASP':'D', 'GLU':'E', 'LYS':'K',
'ARG':'R', 'SER':'S', 'THR':'T', 'TYR':'Y', 'HIS':'H',
'CYS':'C', 'ASN':'N', 'GLN':'Q', 'TRP':'W', 'GLY':'G',}
hydrophobic_residues=['V','I','L','M','F','W','C']
charged_residues=['H','R','K','D','E']
def add_cb(input_array):
#from protein mpnn
#The virtual Cβ coordinates were calculated using ideal angle and bond length definitions: b = Cα - N, c = C - Cα, a = cross(b, c), Cβ = -0.58273431*a + 0.56802827*b - 0.54067466*c + Cα.
N,CA,C,O = input_array
b = CA - N
c = C - CA
a = np.cross(b,c)
CB = np.around(-0.58273431*a + 0.56802827*b - 0.54067466*c + CA,3)
return CB #np.array([N,CA,C,CB,O])
aaSMILES = {'G': 'NCC(=O)O',
'A': 'N[C@@]([H])(C)C(=O)O',
'R': 'N[C@@]([H])(CCCNC(=N)N)C(=O)O',
'N': 'N[C@@]([H])(CC(=O)N)C(=O)O',
'D': 'N[C@@]([H])(CC(=O)O)C(=O)O',
'C': 'N[C@@]([H])(CS)C(=O)O',
'E': 'N[C@@]([H])(CCC(=O)O)C(=O)O',
'Q': 'N[C@@]([H])(CCC(=O)N)C(=O)O',
'H': 'N[C@@]([H])(CC1=CN=C-N1)C(=O)O',
'I': 'N[C@@]([H])(C(CC)C)C(=O)O',
'L': 'N[C@@]([H])(CC(C)C)C(=O)O',
'K': 'N[C@@]([H])(CCCCN)C(=O)O',
'M': 'N[C@@]([H])(CCSC)C(=O)O',
'F': 'N[C@@]([H])(Cc1ccccc1)C(=O)O',
'P': 'N1[C@@]([H])(CCC1)C(=O)O',
'S': 'N[C@@]([H])(CO)C(=O)O',
'T': 'N[C@@]([H])(C(O)C)C(=O)O',
'W': 'N[C@@]([H])(CC(=CN2)C1=C2C=CC=C1)C(=O)O',
'Y': 'N[C@@]([H])(Cc1ccc(O)cc1)C(=O)O',
'V': 'N[C@@]([H])(C(C)C)C(=O)O'}
class Filter:
def __init__(
self,
min_loop_len = 4,
max_loop_len = 25,
min_BSA = 400,
min_relBSA = 0.2,
max_relncBSA = 0.3,
saved_maxlen = 25,
saved_BSA = 400,
saved_relBSA = 0.2,
saved_helix_ratio = 1.0,
saved_strand_ratio = 1.0,
cyclic=False
) -> None:
self.re_filter = re.compile(r'D[GPS]|[P]{2,}|C') #https://www.thermofisher.cn/cn/zh/home/life-science/protein-biology/protein-biology-learning-center/protein-biology-resource-library/pierce-protein-methods/peptide-design.html
self.cache_dir = CACHE_DIR
self.min_loop_len = min_loop_len
self.max_loop_len = max_loop_len
self.min_BSA = min_BSA
self.min_relBSA = min_relBSA
self.max_relncBSA = max_relncBSA
self.saved_maxlen = saved_maxlen
self.saved_BSA = saved_BSA
self.saved_relBSA = saved_relBSA
self.saved_helix_ratio = saved_helix_ratio
self.saved_strand_ratio = saved_strand_ratio
self.cyclic = cyclic
@classmethod
def get_ss_info(cls, pdb_path: str):
dssp, keys = dssp_dict_from_pdb_file(pdb_path, DSSP='mkdssp')
ss_info = {}
for key in keys:
chain_id, value = key[0], dssp[key]
if chain_id not in ss_info:
ss_info[chain_id] = []
ss_type = value[1]
if ss_type in ['H', 'G', 'I']:
ss_info[chain_id].append('a')
elif ss_type in ['B', 'E', 'T', 'S']:
ss_info[chain_id].append('b')
elif ss_type == '-':
ss_info[chain_id].append('c')
else:
raise ValueError(f'SS type {ss_type} cannot be recognized!')
return ss_info
@classmethod
def get_bsa(self, receptor_chain: Chain.Chain, ligand_chain: Chain.Chain):
lig_chain_id = ligand_chain.get_id()
tmp_structure = Structure.Structure('tmp')
tmp_model = Model.Model(0)
tmp_structure.add(tmp_model)
tmp_model.add(ligand_chain)
unbounded_SASA = calcBioPDB(tmp_structure)[0].residueAreas()[lig_chain_id]
unbounded_SASA = [k.total for k in unbounded_SASA.values()]
tmp_model.add(receptor_chain)
bounded_SASA = calcBioPDB(tmp_structure)[0].residueAreas()[lig_chain_id]
bounded_SASA = [k.total for k in bounded_SASA.values()]
abs_bsa = sum(unbounded_SASA[1:-1]) - sum(bounded_SASA[1:-1])
rel_bsa = abs_bsa / sum(unbounded_SASA[1:-1])
rel_nc_bsa = (unbounded_SASA[0] + unbounded_SASA[-1] - bounded_SASA[0] - bounded_SASA[-1]) / (unbounded_SASA[0] + unbounded_SASA[-1])
return abs_bsa, rel_bsa, rel_nc_bsa, tmp_structure
def filter_pdb(self, pdb_path, selected_chains=None):
parser = PDBParser(QUIET=True)
ss_info = self.get_ss_info(pdb_path)
structure = parser.get_structure('anonym', pdb_path)
for model in structure.get_models(): # use model 1 only
structure = model
break
results = []
for chain in structure.get_chains():
if selected_chains is not None and chain.get_id() not in selected_chains:
continue
chain_ss_info = None if ss_info is None else ss_info[chain.get_id()]
results.extend(self.filter_chain(chain, chain_ss_info))
return results
def filter_chain(self, chain, ss_info=None):
non_standard = False
for res in chain:
if res.get_resname() not in AA3TO1:
non_standard = True
break
if non_standard:
return []
if len(ss_info) != len(chain):
return []
cb_coord = []
seq = ''
for res in chain:
seq += AA3TO1[res.get_resname()]
try:
cb_coord.append(res['CB'].get_coord())
except:
tmp_coord = np.array([
res['N'].get_coord(),
res['CA'].get_coord(),
res['C'].get_coord(),
res['O'].get_coord()
])
cb_coord.append(add_cb(tmp_coord))
cb_coord = np.array(cb_coord)
cb_contact = np.linalg.norm(cb_coord[None,:,:,] - cb_coord[:,None,:],axis=-1)
if self.cyclic:
possible_ss = (cb_contact >= 3.5) & (cb_contact <= 5) #https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4987930/
else:
possible_ss = np.ones(cb_contact.shape, dtype=bool)
possible_ss = np.triu(np.tril(possible_ss, self.max_loop_len - 1), self.min_loop_len - 1)
ss_pair = np.where(possible_ss)
accepted, saved_spans = [], []
for i, j in zip(ss_pair[0],ss_pair[1]):
redundant = False
for exist_i, exist_j in saved_spans:
overlap = min(j, exist_j) - max(i, exist_i) + 1
if overlap / (j - i + 1) > 0.4 or overlap / (exist_j - exist_i + 1) > 0.4:
redundant = True
break
if redundant:
continue
#20A neighbor
min_dist = np.min(cb_contact[i : j + 1], axis=0)
min_dist[max(i - 5, 0):min(j + 6, len(seq))] = 21
neighbors_20A = np.where(min_dist < 20)[0]
if len(neighbors_20A) < 16:
continue
#sequence filter
pep_seq = seq[i:j+1]
#cystine 2P and DGDA filter
if self.re_filter.search(pep_seq) is not None:
continue
prot_param=ProteinAnalysis(pep_seq)
aa_percent = prot_param.get_amino_acids_percent()
max_ratio = max(aa_percent.values())
#Discard if any amino acid represents more than 25% of the total sequence
if max_ratio > 0.25:
continue
hydrophobic_ratio = sum([aa_percent[k] for k in hydrophobic_residues])
#hydrophobic amino acids exceeds 45%
if hydrophobic_ratio > 0.45:
continue
#charged amino acids exceeds 45% or less than 25%
charged_ratio = sum([aa_percent[k] for k in charged_residues])
if charged_ratio > 0.45 or charged_ratio < 0.25:
continue
#instablility index>40
if prot_param.instability_index() >= 40:
continue
# #TPSA filter (for cell penetration)
# mol_weight = prot_param.molecular_weight()
# pepsmile='O'
# for k in pep_seq:
# pepsmile=pepsmile[:-1] + aaSMILES[k]
# pepsmile = MolFromSmiles(pepsmile)
# tpsa = CalcTPSA(pepsmile)
# if tpsa <= mol_weight * 0.2:
# continue
#build structure and get BSA
receptor_chain = Chain.Chain('R')
ligand_chain = Chain.Chain('L')
for k,res in enumerate(chain):
if k >= i and k <= j:
ligand_chain.add(res.copy())
elif k in neighbors_20A:
receptor_chain.add(res.copy())
abs_bsa, rel_bsa, rel_nc_bsa, tmp_structure = self.get_bsa(receptor_chain, ligand_chain)
if abs_bsa <= self.min_BSA or rel_bsa <= self.min_relBSA or (self.cyclic and rel_nc_bsa >= self.max_relncBSA):
continue
#prepare for output
length = j - i + 1
if ss_info is None:
helix_ratio = -1
strand_ratio = -1
coil_ratio = -1
else:
ssa = ss_info[i:j+1]
helix_ratio = ssa.count('a') / length
strand_ratio = ssa.count('b') / length
coil_ratio = ssa.count('c') / length
# helix_ratio = (ssa.count("G") + ssa.count("H") + ssa.count("I") + ssa.count("T")) / length
# strand_ratio = (ssa.count("E") + ssa.count("B")) / length
# coil_ratio = (ssa.count("S")+ssa.count("C")) / length
if length <= self.saved_maxlen and abs_bsa >= self.saved_BSA and rel_bsa >= self.saved_relBSA and helix_ratio <= self.saved_helix_ratio and strand_ratio <= self.saved_strand_ratio:
output_structure = deepcopy(tmp_structure)
else:
output_structure = None
accepted.append((
i , j, length, abs_bsa, rel_bsa, helix_ratio, strand_ratio, coil_ratio, output_structure
))
saved_spans.append((i, j))
return accepted
def get_non_redundant(mmap_dir):
np.random.seed(12)
index_path = os.path.join(mmap_dir, 'index.txt')
parent_dir = mmap_dir
# load index file
items = {}
with open(index_path, 'r') as fin:
lines = fin.readlines()
for line in lines:
values = line.strip().split('\t')
_id, seq = values[0], values[-1]
chain, pdb_file = _id.split('_')
items[_id] = (seq, chain, pdb_file)
# make temporary directory
tmp_dir = os.path.join(parent_dir, 'tmp')
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
else:
raise ValueError(f'Working directory {tmp_dir} exists!')
# 1. get non-redundant dimer by 90% seq-id
fasta = os.path.join(tmp_dir, 'seq.fasta')
with open(fasta, 'w') as fout:
for _id in items:
fout.write(f'>{_id}\n{items[_id][0]}\n')
id2clu, clu2id = clustering(fasta, tmp_dir, 0.9)
non_redundant = []
for clu in clu2id:
ids = clu2id[clu]
non_redundant.append(np.random.choice(ids))
print_log(f'Non-redundant entries: {len(non_redundant)}')
shutil.rmtree(tmp_dir)
# 2. construct non_redundant items
indexes = {}
for _id in non_redundant:
_, chain, pdb_file = items[_id]
if pdb_file not in indexes:
indexes[pdb_file] = []
indexes[pdb_file].append(chain)
return indexes
def mp_worker(data_dir, tmp_dir, pdb_file, selected_chains, pep_filter, pdb_out_dir, queue):
category = pdb_file[4:6]
category_dir = os.path.join(data_dir, category)
path = os.path.join(category_dir, pdb_file)
tmp_file = os.path.join(tmp_dir, f'{pdb_file}.decompressed')
pdb_id = get_filename(pdb_file.split('.')[0])
# uncompress the file to the tmp file
with gzip.open(path, 'rb') as fin:
with open(tmp_file, 'wb') as fout:
shutil.copyfileobj(fin, fout)
files = []
try:
# biotitie_pdb_file = biotite_pdb.PDBFile.read(tmp_file)
# biotite_struct = biotitie_pdb_file.get_structure(model=1)
# ss_info = { chain: annotate_sse(biotite_struct, chain_id=chain) for chain in selected_chains }
results = pep_filter.filter_pdb(tmp_file, selected_chains=selected_chains)
for item in results:
i, j, struct = item[0], item[1], item[-1]
if struct is None:
continue
io = PDBIO()
io.set_structure(struct)
_id = pdb_id + f'_{i}_{j}'
save_path = os.path.join(pdb_out_dir, _id + '.pdb')
io.save(save_path)
files.append(save_path)
except Exception: # pdbs with missing backbone coordinates or DSSP failed
pass
queue.put((pdb_file, files))
os.remove(tmp_file)
def process_iterator(indexes, data_dir, tmp_dir, out_dir, pocket_th, n_cpu):
pdb_out_dir = os.path.join(out_dir, 'pdbs')
if not os.path.exists(pdb_out_dir):
os.makedirs(pdb_out_dir)
pep_filter = Filter()
file_cnt, pointer, filenames = 0, 0, list(indexes.keys())
id2task = {}
queue = mp.Queue()
# initialize tasks
for _ in range(n_cpu):
task_id = filenames[pointer]
id2task[task_id] = mp.Process(
target=mp_worker,
args=(data_dir, tmp_dir, task_id, indexes[task_id], pep_filter, pdb_out_dir, queue)
)
id2task[task_id].start()
pointer += 1
while True:
if len(id2task) == 0:
break
if not queue.qsize: # no finished ones
time.sleep(1)
continue
pdb_file, paths = queue.get()
file_cnt += 1
id2task[pdb_file].join()
del id2task[pdb_file]
# add the next task
if pointer < len(filenames):
task_id = filenames[pointer]
id2task[task_id] = mp.Process(
target=mp_worker,
args=(data_dir, tmp_dir, task_id, indexes[task_id], pep_filter, pdb_out_dir, queue)
)
id2task[task_id].start()
pointer += 1
# handle processed data
for save_path in paths:
_id = get_filename(save_path)
list_blocks, chains = pdb_to_list_blocks(save_path, return_chain_ids=True)
if chains[0] == 'L':
list_blocks, chains = (list_blocks[1], list_blocks[0]), (chains[1], chains[0])
rec_blocks, lig_blocks = list_blocks
rec_chain, lig_chain = chains
try:
_, (pocket_idx, _) = blocks_cb_interface(rec_blocks, lig_blocks, pocket_th)
except KeyError:
continue
rec_num_units = sum([len(block) for block in rec_blocks])
lig_num_units = sum([len(block) for block in lig_blocks])
rec_data = [block.to_tuple() for block in rec_blocks]
lig_data = [block.to_tuple() for block in lig_blocks]
rec_seq = ''.join([AA3TO1[block.abrv] for block in rec_blocks])
lig_seq = ''.join([AA3TO1[block.abrv] for block in lig_blocks])
yield _id, (rec_data, lig_data), [
len(rec_blocks), len(lig_blocks), rec_num_units, lig_num_units,
rec_chain, lig_chain, rec_seq, lig_seq,
','.join([str(idx) for idx in pocket_idx]),
], file_cnt
def main(args):
indexes = get_non_redundant(args.database_dir)
cnt = len(indexes)
tmp_dir = './tmp'
if not os.path.exists(tmp_dir):
os.makedirs(tmp_dir)
print_log(f'Processing data from directory: {args.pdb_dir}.')
print_log(f'Number of entries: {cnt}')
create_mmap(
process_iterator(indexes, args.pdb_dir, tmp_dir, args.out_dir, args.pocket_th, args.n_cpu),
args.out_dir, cnt)
print_log('Finished!')
shutil.rmtree(tmp_dir)
if __name__ == '__main__':
main(parse())