File size: 8,327 Bytes
52007f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209

import os
from typing import Optional, Any

import numpy as np
import torch
from torch.nn.utils.rnn import pad_sequence

from utils import register as R
from utils.const import sidechain_atoms

from data.converter.list_blocks_to_pdb import list_blocks_to_pdb

from .format import VOCAB, Block, Atom
from .mmap_dataset import MMAPDataset
from .resample import ClusterResampler



def calculate_covariance_matrix(point_cloud):
    # Calculate the covariance matrix of the point cloud
    covariance_matrix = np.cov(point_cloud, rowvar=False)
    return covariance_matrix


@R.register('CoDesignDataset')
class CoDesignDataset(MMAPDataset):

    MAX_N_ATOM = 14

    def __init__(
            self,
            mmap_dir: str,
            backbone_only: bool,  # only backbone (N, CA, C, O) or full-atom
            specify_data: Optional[str] = None,
            specify_index: Optional[str] = None,
            padding_collate: bool = False,
            cluster: Optional[str] = None,
            use_covariance_matrix: bool = False
        ) -> None:
        super().__init__(mmap_dir, specify_data, specify_index)
        self.mmap_dir = mmap_dir
        self.backbone_only = backbone_only
        self._lengths = [len(prop[-1].split(',')) + int(prop[1]) for prop in self._properties]
        self.padding_collate = padding_collate
        self.resampler = ClusterResampler(cluster) if cluster else None  # should only be used in training!
        self.use_covariance_matrix = use_covariance_matrix

        self.dynamic_idxs = [i for i in range(len(self))]
        self.update_epoch() # should be called every epoch

    def update_epoch(self):
        if self.resampler is not None:
            self.dynamic_idxs = self.resampler(len(self))

    def get_len(self, idx):
        return self._lengths[self.dynamic_idxs[idx]]

    def get_summary(self, idx: int):
        props = self._properties[idx]
        _id = self._indexes[idx][0].split('.')[0]
        ref_pdb = os.path.join(self.mmap_dir, '..', 'pdbs', _id + '.pdb')
        rec_chain, lig_chain = props[4], props[5]
        return _id, ref_pdb, rec_chain, lig_chain

    def __getitem__(self, idx: int):
        idx = self.dynamic_idxs[idx]
        rec_blocks, lig_blocks = super().__getitem__(idx)
        # receptor, (lig_chain_id, lig_blocks) = super().__getitem__(idx)
        # pocket = {}
        # for i in self._properties[idx][-1].split(','):
        #     chain, i = i.split(':')
        #     if chain not in pocket:
        #         pocket[chain] = []
        #     pocket[chain].append(int(i))
        # rec_blocks = []
        # for chain_id, blocks in receptor:
        #     for i in pocket[chain_id]:
        #         rec_blocks.append(blocks[i])
        pocket_idx = [int(i) for i in self._properties[idx][-1].split(',')]
        rec_position_ids = [i + 1 for i, _ in enumerate(rec_blocks)]
        rec_blocks = [rec_blocks[i] for i in pocket_idx]
        rec_position_ids = [rec_position_ids[i] for i in pocket_idx]
        rec_blocks = [Block.from_tuple(tup) for tup in rec_blocks]
        lig_blocks = [Block.from_tuple(tup) for tup in lig_blocks]

        # for block in lig_blocks:
        #     block.units = [Atom('CA', [0, 0, 0], 'C')]
        # if idx == 0:
        #     print(self._properties[idx])
        #     print(''.join(VOCAB.abrv_to_symbol(block.abrv) for block in lig_blocks))
        #     list_blocks_to_pdb([
        #         rec_blocks, lig_blocks
        #     ], ['B', 'A'], 'pocket.pdb')

        mask = [0 for _ in rec_blocks] + [1 for _ in lig_blocks]
        position_ids = rec_position_ids + [i + 1 for i, _ in enumerate(lig_blocks)]
        X, S, atom_mask = [], [], []
        for block in rec_blocks + lig_blocks:
            symbol = VOCAB.abrv_to_symbol(block.abrv)
            atom2coord = { unit.name: unit.get_coord() for unit in block.units }
            bb_pos = np.mean(list(atom2coord.values()), axis=0).tolist()
            coords, coord_mask = [], []
            for atom_name in VOCAB.backbone_atoms + sidechain_atoms.get(symbol, []):
                if atom_name in atom2coord:
                    coords.append(atom2coord[atom_name])
                    coord_mask.append(1)
                else:
                    coords.append(bb_pos)
                    coord_mask.append(0)
            n_pad = self.MAX_N_ATOM - len(coords)
            for _ in range(n_pad):
                coords.append(bb_pos)
                coord_mask.append(0)

            X.append(coords)
            S.append(VOCAB.symbol_to_idx(symbol))
            atom_mask.append(coord_mask)
        
        X, atom_mask = torch.tensor(X, dtype=torch.float), torch.tensor(atom_mask, dtype=torch.bool)
        mask = torch.tensor(mask, dtype=torch.bool)
        if self.backbone_only:
            X, atom_mask = X[:, :4], atom_mask[:, :4]

        if self.use_covariance_matrix:
            cov = calculate_covariance_matrix(X[~mask][:, 1][atom_mask[~mask][:, 1]].numpy()) # only use the receptor to derive the affine transformation
            eps = 1e-4
            cov = cov + eps * np.identity(cov.shape[0])
            L = torch.from_numpy(np.linalg.cholesky(cov)).float().unsqueeze(0)
        else:
            L = None

        item =  {
            'X': X,                                                         # [N, 14] or [N, 4] if backbone_only == True
            'S': torch.tensor(S, dtype=torch.long),                         # [N]
            'position_ids': torch.tensor(position_ids, dtype=torch.long),   # [N]
            'mask': mask,                                                   # [N], 1 for generation
            'atom_mask': atom_mask,                                         # [N, 14] or [N, 4], 1 for having records in the PDB
            'lengths': len(S),
        }
        if L is not None:
            item['L'] = L
        return item

    def collate_fn(self, batch):
        if self.padding_collate:
            results = {}
            pad_idx = VOCAB.symbol_to_idx(VOCAB.PAD)
            for key in batch[0]:
                values = [item[key] for item in batch]
                if values[0] is None:
                    results[key] = None
                    continue
                if key == 'lengths':
                    results[key] = torch.tensor(values, dtype=torch.long)
                elif key == 'S':
                    results[key] = pad_sequence(values, batch_first=True, padding_value=pad_idx)
                else:
                    results[key] = pad_sequence(values, batch_first=True, padding_value=0)
            return results
        else:
            results = {}
            for key in batch[0]:
                values = [item[key] for item in batch]
                if values[0] is None:
                    results[key] = None
                    continue
                if key == 'lengths':
                    results[key] = torch.tensor(values, dtype=torch.long)
                else:
                    results[key] = torch.cat(values, dim=0)
            return results


@R.register('ShapeDataset')
class ShapeDataset(CoDesignDataset):
    def __init__(
            self,
            mmap_dir: str,
            specify_data: Optional[str] = None,
            specify_index: Optional[str] = None,
            padding_collate: bool = False,
            cluster: Optional[str] = None
        ) -> None:
        super().__init__(mmap_dir, False, specify_data, specify_index, padding_collate, cluster)
        self.ca_idx = VOCAB.backbone_atoms.index('CA')
    
    def __getitem__(self, idx: int):
        item = super().__getitem__(idx)

        # refine coordinates to CA and the atom furthest from CA
        X = item['X'] # [N, 14, 3]
        atom_mask = item['atom_mask']
        ca_x = X[:, self.ca_idx].unsqueeze(1) # [N, 1, 3]
        sc_x = X[:, 4:]  # [N, 10, 3], sidechain atom indexes
        dist = torch.norm(sc_x - ca_x, dim=-1) # [N, 10]
        dist = dist.masked_fill(~atom_mask[:, 4:], 1e10)
        furthest_atom_x = sc_x[torch.arange(sc_x.shape[0]), torch.argmax(dist, dim=-1)] # [N, 3]
        X = torch.cat([ca_x, furthest_atom_x.unsqueeze(1)], dim=1)
        
        item['X'] = X
        return item


if __name__ == '__main__':
    import sys
    dataset = CoDesignDataset(sys.argv[1], backbone_only=True)
    print(dataset[0])