File size: 22,841 Bytes
226675b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 |
# This file is licensed under AGPL-3.0
# Copyright (c) NXAI GmbH and its affiliates 2024
# Benedikt Alkin, Maximilian Beck, Korbinian Pöppel
import math
from enum import Enum
import einops
import torch
import torch.nn.functional as F
from torch import nn
# from vision_lstm_util import interpolate_sincos, to_ntuple, VitPatchEmbed, VitPosEmbed2d, DropPath
from rscd.models.decoderheads.vision_lstm_util import interpolate_sincos, to_ntuple, VitPatchEmbed, VitPosEmbed2d, DropPath
class SequenceTraversal(Enum):
ROWWISE_FROM_TOP_LEFT = "rowwise_from_top_left"
ROWWISE_FROM_BOT_RIGHT = "rowwise_from_bot_right"
def bias_linspace_init_(param: torch.Tensor, start: float = 3.4, end: float = 6.0) -> torch.Tensor:
"""Linearly spaced bias init across dimensions."""
assert param.dim() == 1, f"param must be 1-dimensional (typically a bias), got {param.dim()}"
n_dims = param.shape[0]
init_vals = torch.linspace(start, end, n_dims)
with torch.no_grad():
param.copy_(init_vals)
return param
def small_init_(param: torch.Tensor, dim: int) -> torch.Tensor:
"""
Fills the input Tensor with values according to the method described in Transformers without Tears: Improving
the Normalization of Self-Attention - Nguyen, T. & Salazar, J. (2019), using a normal distribution.
Adopted from https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/init_functions.py.
"""
std = math.sqrt(2 / (5 * dim))
torch.nn.init.normal_(param, mean=0.0, std=std)
return param
def wang_init_(param: torch.Tensor, dim: int, num_blocks: int):
""" Adopted from https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/init_functions.py. """
std = 2 / num_blocks / math.sqrt(dim)
torch.nn.init.normal_(param, mean=0.0, std=std)
return param
def parallel_stabilized_simple(
queries: torch.Tensor,
keys: torch.Tensor,
values: torch.Tensor,
igate_preact: torch.Tensor,
fgate_preact: torch.Tensor,
lower_triangular_matrix: torch.Tensor = None,
stabilize_rowwise: bool = True,
eps: float = 1e-6,
) -> torch.Tensor:
"""
This is the mLSTM cell in parallel form.
This version is stabilized. We control the range of exp() arguments by
ensuring that they are always smaller than 0.0 by subtracting the maximum.
Args:
:param queries: (torch.Tensor) (B, NH, S, DH)
:param keys: (torch.Tensor) (B, NH, S, DH)
:param values: (torch.Tensor) (B, NH, S, DH)
:param igate_preact: (torch.Tensor) (B, NH, S, 1)
:param fgate_preact: (torch.Tensor) (B, NH, S, 1)
:param lower_triangular_matrix: (torch.Tensor) (S,S). Defaults to None.
:param stabilize_rowwise: (bool) Wether to stabilize the combination matrix C rowwise (take maximum per row).
Alternative: Subtract the maximum over all rows. Defaults to True.
:param eps: (float) small constant to avoid division by 0. Defaults to 1e-6.
Returns:
torch.Tensor: (B, NH, S, DH), h_tilde_state
"""
B, NH, S, DH = queries.shape
_dtype, _device = queries.dtype, queries.device
# forget gate matrix
log_fgates = torch.nn.functional.logsigmoid(fgate_preact) # (B, NH, S, 1)
if lower_triangular_matrix is None or S < lower_triangular_matrix.size(-1):
ltr = torch.tril(torch.ones((S, S), dtype=torch.bool, device=_device))
else:
ltr = lower_triangular_matrix
assert ltr.dtype == torch.bool, f"lower_triangular_matrix must be of dtype bool, got {ltr.dtype}"
log_fgates_cumsum = torch.cat(
[
torch.zeros((B, NH, 1, 1), dtype=_dtype, device=_device),
torch.cumsum(log_fgates, dim=-2),
],
dim=-2,
) # (B, NH, S+1, 1)
# for each batch/head this is a matrix of shape (S+1, S+1) containing the cumsum of the log forget gate values
# in the second dimension (colum dimension). Each row has the same is a copy of the first row.
# First entry of each row is zero.
rep_log_fgates_cumsum = log_fgates_cumsum.repeat(1, 1, 1, S + 1) # (B, NH, S+1, S+1)
# Now in each row cut off / subtract the forgetgate values of the later timesteps
# where col j > row i
_log_fg_matrix = rep_log_fgates_cumsum - rep_log_fgates_cumsum.transpose(-2, -1) # (B, NH, S+1, S+1)
# Causal masking & selection of the correct submatrix, such that forgetgate at timestep t is not applied
# to the input at timestep t
log_fg_matrix = torch.where(ltr, _log_fg_matrix[:, :, 1:, 1:], -float("inf")) # (B, NH, S, S)
# gate decay matrix D (combination of forget gate and input gate)
log_D_matrix = log_fg_matrix + igate_preact.transpose(-2, -1) # (B, NH, S, S)
# D matrix stabilization
if stabilize_rowwise:
max_log_D, _ = torch.max(log_D_matrix, dim=-1, keepdim=True) # (B, NH, S, 1)
else:
max_log_D = torch.max(log_D_matrix.view(B, NH, -1), dim=-1, keepdim=True)[0].unsqueeze(-1)
# (B, NH, 1, 1)
log_D_matrix_stabilized = log_D_matrix - max_log_D # (B, NH, S, S)
D_matrix = torch.exp(log_D_matrix_stabilized) # (B, NH, S, S)
keys_scaled = keys / math.sqrt(DH)
# combination matrix C
qk_matrix = queries @ keys_scaled.transpose(-2, -1) # (B, NH, S, S)
C_matrix = qk_matrix * D_matrix # (B, NH, S, S)
normalizer = torch.maximum(C_matrix.sum(dim=-1, keepdim=True).abs(), torch.exp(-max_log_D)) # (B, NH, S, 1)
# (B, NH, S, S)
C_matrix_normalized = C_matrix / (normalizer + eps)
# retrieved values
h_tilde_state = C_matrix_normalized @ values # (B, NH, S, DH)
return h_tilde_state
class LinearHeadwiseExpand(nn.Module):
"""
This is a structured projection layer that projects the input to a higher dimension.
It only allows integer up-projection factors, i.e. the output dimension is a multiple of the input dimension.
"""
def __init__(self, dim, num_heads, bias=False):
super().__init__()
assert dim % num_heads == 0
self.dim = dim
self.num_heads = num_heads
dim_per_head = dim // num_heads
self.weight = nn.Parameter(torch.empty(num_heads, dim_per_head, dim_per_head))
if bias:
self.bias = nn.Parameter(torch.empty(dim))
else:
self.bias = None
self.reset_parameters()
def reset_parameters(self):
nn.init.normal_(self.weight.data, mean=0.0, std=math.sqrt(2 / 5 / self.weight.shape[-1]))
if self.bias is not None:
nn.init.zeros_(self.bias.data)
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = einops.rearrange(x, "... (nh d) -> ... nh d", nh=self.num_heads)
x = einops.einsum(
x,
self.weight,
"... nh d, nh out_d d -> ... nh out_d",
)
x = einops.rearrange(x, "... nh out_d -> ... (nh out_d)")
if self.bias is not None:
x = x + self.bias
return x
def extra_repr(self):
return (
f"dim={self.dim}, "
f"num_heads={self.num_heads}, "
f"bias={self.bias is not None}, "
)
class CausalConv1d(nn.Module):
"""
Implements causal depthwise convolution of a time series tensor.
Input: Tensor of shape (B,T,F), i.e. (batch, time, feature)
Output: Tensor of shape (B,T,F)
Args:
feature_dim: number of features in the input tensor
kernel_size: size of the kernel for the depthwise convolution
causal_conv_bias: whether to use bias in the depthwise convolution
channel_mixing: whether to use channel mixing (i.e. groups=1) or not (i.e. groups=feature_dim)
If True, it mixes the convolved features across channels.
If False, all the features are convolved independently.
"""
def __init__(self, dim, kernel_size=4, bias=True):
super().__init__()
self.dim = dim
self.kernel_size = kernel_size
self.bias = bias
# padding of this size assures temporal causality.
self.pad = kernel_size - 1
self.conv = nn.Conv1d(
in_channels=dim,
out_channels=dim,
kernel_size=kernel_size,
padding=self.pad,
groups=dim,
bias=bias,
)
self.reset_parameters()
def reset_parameters(self):
self.conv.reset_parameters()
def forward(self, x: torch.Tensor) -> torch.Tensor:
# conv requires dim first
x = einops.rearrange(x, "b l d -> b d l")
# causal conv1d
x = self.conv(x)
x = x[:, :, :-self.pad]
# back to dim last
x = einops.rearrange(x, "b d l -> b l d")
return x
class LayerNorm(nn.Module):
""" LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False. """
def __init__(
self,
ndim: int = -1,
weight: bool = True,
bias: bool = False,
eps: float = 1e-5,
residual_weight: bool = True,
):
super().__init__()
self.weight = nn.Parameter(torch.zeros(ndim)) if weight else None
self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
self.eps = eps
self.residual_weight = residual_weight
self.ndim = ndim
self.reset_parameters()
@property
def weight_proxy(self) -> torch.Tensor:
if self.weight is None:
return None
if self.residual_weight:
return 1.0 + self.weight
else:
return self.weight
def forward(self, x: torch.Tensor) -> torch.Tensor:
return F.layer_norm(
x,
normalized_shape=(self.ndim,),
weight=self.weight_proxy,
bias=self.bias,
eps=self.eps,
)
def reset_parameters(self):
if self.weight_proxy is not None:
if self.residual_weight:
nn.init.zeros_(self.weight)
else:
nn.init.ones_(self.weight)
if self.bias is not None:
nn.init.zeros_(self.bias)
class MultiHeadLayerNorm(LayerNorm):
def forward(self, x: torch.Tensor) -> torch.Tensor:
assert x.ndim == 4, "Input must be 4D tensor (B, NH, S, DH)"
B, NH, S, DH = x.shape
gn_in_1 = x.transpose(1, 2) # (B, S, NH, DH)
gn_in_2 = gn_in_1.reshape(B * S, NH * DH) # (B * S, NH * DH)
out = F.group_norm(
gn_in_2,
num_groups=NH,
weight=self.weight_proxy,
bias=self.bias,
eps=self.eps,
) # .to(x.dtype)
# (B * S), (NH * DH) -> (B, S, NH, DH) -> (B, NH, S, DH)
out = out.view(B, S, NH, DH).transpose(1, 2)
return out
class MatrixLSTMCell(nn.Module):
def __init__(self, dim, num_heads):
super().__init__()
self.dim = dim
self.num_heads = num_heads
self.igate = nn.Linear(3 * dim, num_heads)
self.fgate = nn.Linear(3 * dim, num_heads)
self.outnorm = MultiHeadLayerNorm(ndim=dim, weight=True, bias=False)
self.causal_mask_cache = {}
self.reset_parameters()
def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
B, S, _ = q.shape # (B, S, H)
if_gate_input = torch.cat([q, k, v], dim=-1)
q = q.view(B, S, self.num_heads, -1) # (B, S, NH, DH)
k = k.view(B, S, self.num_heads, -1) # (B, S, NH, DH)
v = v.view(B, S, self.num_heads, -1) # (B, S, NH, DH)
q = q.transpose(1, 2) # (B, NH, S, DH)
k = k.transpose(1, 2) # (B, NH, S, DH)
v = v.transpose(1, 2) # (B, NH, S, DH)
# compute input and forget gate pre-activations
igate_preact = self.igate(if_gate_input) # (B, S, NH)
igate_preact = igate_preact.transpose(-1, -2).unsqueeze(-1) # (B, NH, S, 1)
fgate_preact = self.fgate(if_gate_input) # (B, S, NH)
fgate_preact = fgate_preact.transpose(-1, -2).unsqueeze(-1) # (B, NH, S, 1)#
# cache causal mask to avoid memory allocation in every iteration
if S in self.causal_mask_cache:
causal_mask = self.causal_mask_cache[(S, str(q.device))]
else:
causal_mask = torch.tril(torch.ones(S, S, dtype=torch.bool, device=q.device))
self.causal_mask_cache[(S, str(q.device))] = causal_mask
h_state = parallel_stabilized_simple(
queries=q,
keys=k,
values=v,
igate_preact=igate_preact,
fgate_preact=fgate_preact,
lower_triangular_matrix=causal_mask,
) # (B, NH, S, DH)
h_state_norm = self.outnorm(h_state) # (B, NH, S, DH)
h_state_norm = h_state_norm.transpose(1, 2).reshape(B, S, -1) # (B, NH, S, DH) -> (B, S, NH, DH) -> (B, S, H)
return h_state_norm
def reset_parameters(self):
self.outnorm.reset_parameters()
# forget gate initialization
torch.nn.init.zeros_(self.fgate.weight)
bias_linspace_init_(self.fgate.bias, start=3.0, end=6.0)
# input gate initialization
torch.nn.init.zeros_(self.igate.weight)
torch.nn.init.normal_(self.igate.bias, mean=0.0, std=0.1)
class ViLLayer(nn.Module):
def __init__(
self,
dim,
direction,
expansion=2,
qkv_block_size=4,
proj_bias=False,
conv_bias=True,
kernel_size=4,
):
super().__init__()
if dim % qkv_block_size != 0:
qkv_block_size=2
# assert dim % qkv_block_size == 0
self.dim = dim
self.direction = direction
self.expansion = expansion
self.qkv_block_size = qkv_block_size
self.proj_bias = proj_bias
self.conv_bias = conv_bias
self.kernel_size = kernel_size
inner_dim = expansion * dim
num_heads = inner_dim // qkv_block_size
self.proj_up = nn.Linear(
in_features=dim,
out_features=2 * inner_dim,
bias=proj_bias,
)
self.q_proj = LinearHeadwiseExpand(
dim=inner_dim,
num_heads=num_heads,
bias=proj_bias,
)
self.k_proj = LinearHeadwiseExpand(
dim=inner_dim,
num_heads=num_heads,
bias=proj_bias,
)
self.v_proj = LinearHeadwiseExpand(
dim=inner_dim,
num_heads=num_heads,
bias=proj_bias,
)
self.conv1d = CausalConv1d(
dim=inner_dim,
kernel_size=kernel_size,
bias=conv_bias,
)
self.mlstm_cell = MatrixLSTMCell(
dim=inner_dim,
num_heads=qkv_block_size,
)
self.learnable_skip = nn.Parameter(torch.ones(inner_dim))
self.proj_down = nn.Linear(
in_features=inner_dim,
out_features=dim,
bias=proj_bias,
)
self.reset_parameters()
def forward(self, x: torch.Tensor) -> torch.Tensor:
B, S, _ = x.shape
# alternate direction in successive layers
if self.direction == SequenceTraversal.ROWWISE_FROM_TOP_LEFT:
pass
elif self.direction == SequenceTraversal.ROWWISE_FROM_BOT_RIGHT:
x = x.flip(dims=[1])
else:
raise NotImplementedError
# up-projection
x_inner = self.proj_up(x)
x_mlstm, z = torch.chunk(x_inner, chunks=2, dim=-1)
# mlstm branch
x_mlstm_conv = self.conv1d(x_mlstm)
x_mlstm_conv_act = F.silu(x_mlstm_conv)
q = self.q_proj(x_mlstm_conv_act)
k = self.k_proj(x_mlstm_conv_act)
v = self.v_proj(x_mlstm)
h_tilde_state = self.mlstm_cell(q=q, k=k, v=v)
h_tilde_state_skip = h_tilde_state + (self.learnable_skip * x_mlstm_conv_act)
# output / z branch
h_state = h_tilde_state_skip * F.silu(z)
# down-projection
x = self.proj_down(h_state)
# reverse alternating flip
if self.direction == SequenceTraversal.ROWWISE_FROM_TOP_LEFT:
pass
elif self.direction == SequenceTraversal.ROWWISE_FROM_BOT_RIGHT:
x = x.flip(dims=[1])
else:
raise NotImplementedError
return x
def reset_parameters(self):
# init inproj
small_init_(self.proj_up.weight, dim=self.dim)
if self.proj_up.bias is not None:
nn.init.zeros_(self.proj_up.bias)
# init outproj (original mLSTM uses num_blocks=1)
wang_init_(self.proj_down.weight, dim=self.dim, num_blocks=1)
if self.proj_down.bias is not None:
nn.init.zeros_(self.proj_down.bias)
nn.init.ones_(self.learnable_skip)
def _init_qkv_proj(qkv_proj: LinearHeadwiseExpand):
# use the embedding dim instead of the inner embedding dim
small_init_(qkv_proj.weight, dim=self.dim)
if qkv_proj.bias is not None:
nn.init.zeros_(qkv_proj.bias)
_init_qkv_proj(self.q_proj)
_init_qkv_proj(self.k_proj)
_init_qkv_proj(self.v_proj)
self.mlstm_cell.reset_parameters()
class ViLBlock(nn.Module):
def __init__(self, dim, direction, drop_path=0.0, norm_bias=False):
super().__init__()
self.dim = dim
self.direction = direction
self.drop_path = drop_path
self.norm_bias = norm_bias
self.drop_path = DropPath(drop_prob=drop_path)
self.norm = LayerNorm(ndim=dim, weight=True, bias=norm_bias)
self.layer = ViLLayer(dim=dim, direction=direction)
self.reset_parameters()
def _forward_path(self, x):
x = self.norm(x)
x = self.layer(x)
return x
def forward(self, x: torch.Tensor) -> torch.Tensor:
x = self.drop_path(x, self._forward_path)
# print('In xlstm now')
return x
def reset_parameters(self):
self.layer.reset_parameters()
self.norm.reset_parameters()
class VisionLSTM(nn.Module):
def __init__(
self,
dim=192,
input_shape=(3, 224, 224),
patch_size=16,
depth=24,
output_shape=(1000,),
mode="classifier",
pooling="bilateral_avg",
drop_path_rate=0.0,
stride=None,
alternation="bidirectional",
drop_path_decay=False,
legacy_norm=False,
):
super().__init__()
self.input_shape = input_shape
self.output_shape = output_shape
ndim = len(self.input_shape) - 1
self.patch_size = to_ntuple(patch_size, n=ndim)
self.dim = dim
self.depth = depth
self.stride = stride
self.mode = mode
self.pooling = pooling
self.alternation = alternation
self.drop_path_rate = drop_path_rate
self.drop_path_decay = drop_path_decay
# initialize patch_embed
self.patch_embed = VitPatchEmbed(
dim=dim,
stride=stride,
num_channels=self.input_shape[0],
resolution=self.input_shape[1:],
patch_size=self.patch_size,
)
# pos embed
self.pos_embed = VitPosEmbed2d(seqlens=self.patch_embed.seqlens, dim=dim)
# calculate stochastic depth per block
if drop_path_decay and drop_path_rate > 0.:
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
else:
dpr = [drop_path_rate] * depth
# directions
directions = []
if alternation == "bidirectional":
for i in range(depth):
if i % 2 == 0:
directions.append(SequenceTraversal.ROWWISE_FROM_TOP_LEFT)
else:
directions.append(SequenceTraversal.ROWWISE_FROM_BOT_RIGHT)
else:
raise NotImplementedError(f"invalid alternation '{alternation}'")
# blocks
self.blocks = nn.ModuleList(
[
ViLBlock(
dim=dim,
drop_path=dpr[i],
direction=directions[i],
)
for i in range(depth)
]
)
# LEGACY: only norm after pooling is needed, norm after blocks is not needed but was used for training
if legacy_norm:
self.legacy_norm = LayerNorm(dim, bias=False)
else:
self.legacy_norm = nn.Identity()
self.norm = nn.LayerNorm(dim, eps=1e-6)
# head
if mode is None:
# no head -> use as feature extractor
assert self.output_shape is None
assert self.pooling is None
self.head = None
self.output_shape = (self.patch_embed.num_patches, dim)
elif mode == "classifier":
# linear classification head
assert self.output_shape is not None and len(self.output_shape) == 1, \
f"define number of classes via output_shape=(num_classes,) (e.g. output_shape=(1000,) for ImageNet-1K"
self.head = nn.Linear(dim, self.output_shape[0])
# following MAE https://github.com/facebookresearch/mae/blob/main/main_finetune.py#L257
nn.init.trunc_normal_(self.head.weight, std=2e-5)
nn.init.zeros_(self.head.bias)
else:
raise NotImplementedError
def load_state_dict(self, state_dict, strict=True):
# interpolate pos_embed for different resolution (e.g. for fine-tuning on higher-resolution)
old_pos_embed = state_dict["pos_embed.embed"]
if old_pos_embed.shape != self.pos_embed.embed.shape:
state_dict["pos_embed.embed"] = interpolate_sincos(embed=old_pos_embed, seqlens=self.pos_embed.seqlens)
return super().load_state_dict(state_dict=state_dict, strict=strict)
@torch.jit.ignore
def no_weight_decay(self):
return {"pos_embed.embed"}
def forward(self, x):
# embed patches
x = self.patch_embed(x)
# add pos_embed
x = self.pos_embed(x)
# flatten to 1d
x = einops.rearrange(x, "b ... d -> b (...) d")
# apply blocks
for block in self.blocks:
x = block(x)
x = self.legacy_norm(x)
# pool
if self.pooling is None:
x = self.norm(x)
elif self.pooling == "bilateral_avg":
# norm after pooling
x = (x[:, 0] + x[:, -1]) / 2
x = self.norm(x)
else:
raise NotImplementedError(f"pooling '{self.pooling}' is not implemented")
# head
if self.head is not None:
x = self.head(x)
return x |