File size: 22,841 Bytes
226675b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
# This file is licensed under AGPL-3.0
# Copyright (c) NXAI GmbH and its affiliates 2024
# Benedikt Alkin, Maximilian Beck, Korbinian Pöppel
import math
from enum import Enum

import einops
import torch
import torch.nn.functional as F
from torch import nn

# from vision_lstm_util import interpolate_sincos, to_ntuple, VitPatchEmbed, VitPosEmbed2d, DropPath
from rscd.models.decoderheads.vision_lstm_util import interpolate_sincos, to_ntuple, VitPatchEmbed, VitPosEmbed2d, DropPath

class SequenceTraversal(Enum):
    ROWWISE_FROM_TOP_LEFT = "rowwise_from_top_left"
    ROWWISE_FROM_BOT_RIGHT = "rowwise_from_bot_right"


def bias_linspace_init_(param: torch.Tensor, start: float = 3.4, end: float = 6.0) -> torch.Tensor:
    """Linearly spaced bias init across dimensions."""
    assert param.dim() == 1, f"param must be 1-dimensional (typically a bias), got {param.dim()}"
    n_dims = param.shape[0]
    init_vals = torch.linspace(start, end, n_dims)
    with torch.no_grad():
        param.copy_(init_vals)
    return param


def small_init_(param: torch.Tensor, dim: int) -> torch.Tensor:
    """
    Fills the input Tensor with values according to the method described in Transformers without Tears: Improving
    the Normalization of Self-Attention - Nguyen, T. & Salazar, J. (2019), using a normal distribution.
    Adopted from https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/init_functions.py.
    """
    std = math.sqrt(2 / (5 * dim))
    torch.nn.init.normal_(param, mean=0.0, std=std)
    return param


def wang_init_(param: torch.Tensor, dim: int, num_blocks: int):
    """ Adopted from https://github.com/EleutherAI/gpt-neox/blob/main/megatron/model/init_functions.py. """
    std = 2 / num_blocks / math.sqrt(dim)
    torch.nn.init.normal_(param, mean=0.0, std=std)
    return param


def parallel_stabilized_simple(
        queries: torch.Tensor,
        keys: torch.Tensor,
        values: torch.Tensor,
        igate_preact: torch.Tensor,
        fgate_preact: torch.Tensor,
        lower_triangular_matrix: torch.Tensor = None,
        stabilize_rowwise: bool = True,
        eps: float = 1e-6,
) -> torch.Tensor:
    """
    This is the mLSTM cell in parallel form.
    This version is stabilized. We control the range of exp() arguments by
    ensuring that they are always smaller than 0.0 by subtracting the maximum.

    Args:
        :param queries: (torch.Tensor) (B, NH, S, DH)
        :param keys: (torch.Tensor) (B, NH, S, DH)
        :param values: (torch.Tensor) (B, NH, S, DH)
        :param igate_preact: (torch.Tensor) (B, NH, S, 1)
        :param fgate_preact: (torch.Tensor) (B, NH, S, 1)
        :param lower_triangular_matrix: (torch.Tensor) (S,S). Defaults to None.
        :param stabilize_rowwise: (bool) Wether to stabilize the combination matrix C rowwise (take maximum per row).
            Alternative: Subtract the maximum over all rows. Defaults to True.
        :param eps: (float) small constant to avoid division by 0. Defaults to 1e-6.

    Returns:
        torch.Tensor: (B, NH, S, DH), h_tilde_state
    """

    B, NH, S, DH = queries.shape
    _dtype, _device = queries.dtype, queries.device

    # forget gate matrix
    log_fgates = torch.nn.functional.logsigmoid(fgate_preact)  # (B, NH, S, 1)
    if lower_triangular_matrix is None or S < lower_triangular_matrix.size(-1):
        ltr = torch.tril(torch.ones((S, S), dtype=torch.bool, device=_device))
    else:
        ltr = lower_triangular_matrix
    assert ltr.dtype == torch.bool, f"lower_triangular_matrix must be of dtype bool, got {ltr.dtype}"

    log_fgates_cumsum = torch.cat(
        [
            torch.zeros((B, NH, 1, 1), dtype=_dtype, device=_device),
            torch.cumsum(log_fgates, dim=-2),
        ],
        dim=-2,
    )  # (B, NH, S+1, 1)
    # for each batch/head this is a matrix of shape (S+1, S+1) containing the cumsum of the log forget gate values
    # in the second dimension (colum dimension). Each row has the same is a copy of the first row.
    # First entry of each row is zero.
    rep_log_fgates_cumsum = log_fgates_cumsum.repeat(1, 1, 1, S + 1)  # (B, NH, S+1, S+1)
    # Now in each row cut off / subtract the forgetgate values of the later timesteps
    # where col j > row i
    _log_fg_matrix = rep_log_fgates_cumsum - rep_log_fgates_cumsum.transpose(-2, -1)  # (B, NH, S+1, S+1)
    # Causal masking & selection of the correct submatrix, such that forgetgate at timestep t is not applied
    # to the input at timestep t
    log_fg_matrix = torch.where(ltr, _log_fg_matrix[:, :, 1:, 1:], -float("inf"))  # (B, NH, S, S)

    # gate decay matrix D (combination of forget gate and input gate)
    log_D_matrix = log_fg_matrix + igate_preact.transpose(-2, -1)  # (B, NH, S, S)
    # D matrix stabilization
    if stabilize_rowwise:
        max_log_D, _ = torch.max(log_D_matrix, dim=-1, keepdim=True)  # (B, NH, S, 1)
    else:
        max_log_D = torch.max(log_D_matrix.view(B, NH, -1), dim=-1, keepdim=True)[0].unsqueeze(-1)
        # (B, NH, 1, 1)
    log_D_matrix_stabilized = log_D_matrix - max_log_D  # (B, NH, S, S)
    D_matrix = torch.exp(log_D_matrix_stabilized)  # (B, NH, S, S)

    keys_scaled = keys / math.sqrt(DH)

    # combination matrix C
    qk_matrix = queries @ keys_scaled.transpose(-2, -1)  # (B, NH, S, S)
    C_matrix = qk_matrix * D_matrix  # (B, NH, S, S)
    normalizer = torch.maximum(C_matrix.sum(dim=-1, keepdim=True).abs(), torch.exp(-max_log_D))  # (B, NH, S, 1)
    # (B, NH, S, S)
    C_matrix_normalized = C_matrix / (normalizer + eps)

    # retrieved values
    h_tilde_state = C_matrix_normalized @ values  # (B, NH, S, DH)

    return h_tilde_state


class LinearHeadwiseExpand(nn.Module):
    """
    This is a structured projection layer that projects the input to a higher dimension.
    It only allows integer up-projection factors, i.e. the output dimension is a multiple of the input dimension.
    """

    def __init__(self, dim, num_heads, bias=False):
        super().__init__()
        assert dim % num_heads == 0
        self.dim = dim
        self.num_heads = num_heads

        dim_per_head = dim // num_heads
        self.weight = nn.Parameter(torch.empty(num_heads, dim_per_head, dim_per_head))
        if bias:
            self.bias = nn.Parameter(torch.empty(dim))
        else:
            self.bias = None
        self.reset_parameters()

    def reset_parameters(self):
        nn.init.normal_(self.weight.data, mean=0.0, std=math.sqrt(2 / 5 / self.weight.shape[-1]))
        if self.bias is not None:
            nn.init.zeros_(self.bias.data)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = einops.rearrange(x, "... (nh d) -> ... nh d", nh=self.num_heads)
        x = einops.einsum(
            x,
            self.weight,
            "... nh d, nh out_d d -> ... nh out_d",
        )
        x = einops.rearrange(x, "... nh out_d -> ... (nh out_d)")
        if self.bias is not None:
            x = x + self.bias
        return x

    def extra_repr(self):
        return (
            f"dim={self.dim}, "
            f"num_heads={self.num_heads}, "
            f"bias={self.bias is not None}, "
        )


class CausalConv1d(nn.Module):
    """
    Implements causal depthwise convolution of a time series tensor.
    Input:  Tensor of shape (B,T,F), i.e. (batch, time, feature)
    Output: Tensor of shape (B,T,F)

    Args:
        feature_dim: number of features in the input tensor
        kernel_size: size of the kernel for the depthwise convolution
        causal_conv_bias: whether to use bias in the depthwise convolution
        channel_mixing: whether to use channel mixing (i.e. groups=1) or not (i.e. groups=feature_dim)
                        If True, it mixes the convolved features across channels.
                        If False, all the features are convolved independently.
    """

    def __init__(self, dim, kernel_size=4, bias=True):
        super().__init__()
        self.dim = dim
        self.kernel_size = kernel_size
        self.bias = bias
        # padding of this size assures temporal causality.
        self.pad = kernel_size - 1
        self.conv = nn.Conv1d(
            in_channels=dim,
            out_channels=dim,
            kernel_size=kernel_size,
            padding=self.pad,
            groups=dim,
            bias=bias,
        )
        self.reset_parameters()

    def reset_parameters(self):
        self.conv.reset_parameters()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        # conv requires dim first
        x = einops.rearrange(x, "b l d -> b d l")
        # causal conv1d
        x = self.conv(x)
        x = x[:, :, :-self.pad]
        # back to dim last
        x = einops.rearrange(x, "b d l -> b l d")
        return x


class LayerNorm(nn.Module):
    """ LayerNorm but with an optional bias. PyTorch doesn't support simply bias=False. """

    def __init__(
            self,
            ndim: int = -1,
            weight: bool = True,
            bias: bool = False,
            eps: float = 1e-5,
            residual_weight: bool = True,
    ):
        super().__init__()
        self.weight = nn.Parameter(torch.zeros(ndim)) if weight else None
        self.bias = nn.Parameter(torch.zeros(ndim)) if bias else None
        self.eps = eps
        self.residual_weight = residual_weight
        self.ndim = ndim
        self.reset_parameters()

    @property
    def weight_proxy(self) -> torch.Tensor:
        if self.weight is None:
            return None
        if self.residual_weight:
            return 1.0 + self.weight
        else:
            return self.weight

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        return F.layer_norm(
            x,
            normalized_shape=(self.ndim,),
            weight=self.weight_proxy,
            bias=self.bias,
            eps=self.eps,
        )

    def reset_parameters(self):
        if self.weight_proxy is not None:
            if self.residual_weight:
                nn.init.zeros_(self.weight)
            else:
                nn.init.ones_(self.weight)
        if self.bias is not None:
            nn.init.zeros_(self.bias)


class MultiHeadLayerNorm(LayerNorm):
    def forward(self, x: torch.Tensor) -> torch.Tensor:
        assert x.ndim == 4, "Input must be 4D tensor (B, NH, S, DH)"
        B, NH, S, DH = x.shape

        gn_in_1 = x.transpose(1, 2)  # (B, S, NH, DH)
        gn_in_2 = gn_in_1.reshape(B * S, NH * DH)  # (B * S, NH * DH)
        out = F.group_norm(
            gn_in_2,
            num_groups=NH,
            weight=self.weight_proxy,
            bias=self.bias,
            eps=self.eps,
        )  # .to(x.dtype)
        # (B * S), (NH * DH) -> (B, S, NH, DH) -> (B, NH, S, DH)
        out = out.view(B, S, NH, DH).transpose(1, 2)
        return out


class MatrixLSTMCell(nn.Module):
    def __init__(self, dim, num_heads):
        super().__init__()
        self.dim = dim
        self.num_heads = num_heads

        self.igate = nn.Linear(3 * dim, num_heads)
        self.fgate = nn.Linear(3 * dim, num_heads)
        self.outnorm = MultiHeadLayerNorm(ndim=dim, weight=True, bias=False)
        self.causal_mask_cache = {}
        self.reset_parameters()

    def forward(self, q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor:
        B, S, _ = q.shape  # (B, S, H)

        if_gate_input = torch.cat([q, k, v], dim=-1)
        q = q.view(B, S, self.num_heads, -1)  # (B, S, NH, DH)
        k = k.view(B, S, self.num_heads, -1)  # (B, S, NH, DH)
        v = v.view(B, S, self.num_heads, -1)  # (B, S, NH, DH)

        q = q.transpose(1, 2)  # (B, NH, S, DH)
        k = k.transpose(1, 2)  # (B, NH, S, DH)
        v = v.transpose(1, 2)  # (B, NH, S, DH)

        # compute input and forget gate pre-activations
        igate_preact = self.igate(if_gate_input)  # (B, S, NH)
        igate_preact = igate_preact.transpose(-1, -2).unsqueeze(-1)  # (B, NH, S, 1)
        fgate_preact = self.fgate(if_gate_input)  # (B, S, NH)
        fgate_preact = fgate_preact.transpose(-1, -2).unsqueeze(-1)  # (B, NH, S, 1)#

        # cache causal mask to avoid memory allocation in every iteration
        if S in self.causal_mask_cache:
            causal_mask = self.causal_mask_cache[(S, str(q.device))]
        else:
            causal_mask = torch.tril(torch.ones(S, S, dtype=torch.bool, device=q.device))
            self.causal_mask_cache[(S, str(q.device))] = causal_mask

        h_state = parallel_stabilized_simple(
            queries=q,
            keys=k,
            values=v,
            igate_preact=igate_preact,
            fgate_preact=fgate_preact,
            lower_triangular_matrix=causal_mask,
        )  # (B, NH, S, DH)

        h_state_norm = self.outnorm(h_state)  # (B, NH, S, DH)
        h_state_norm = h_state_norm.transpose(1, 2).reshape(B, S, -1)  # (B, NH, S, DH) -> (B, S, NH, DH) -> (B, S, H)

        return h_state_norm

    def reset_parameters(self):
        self.outnorm.reset_parameters()
        # forget gate initialization
        torch.nn.init.zeros_(self.fgate.weight)
        bias_linspace_init_(self.fgate.bias, start=3.0, end=6.0)
        # input gate initialization
        torch.nn.init.zeros_(self.igate.weight)
        torch.nn.init.normal_(self.igate.bias, mean=0.0, std=0.1)


class ViLLayer(nn.Module):
    def __init__(
            self,
            dim,
            direction,
            expansion=2,
            qkv_block_size=4,
            proj_bias=False,
            conv_bias=True,
            kernel_size=4,
    ):
        super().__init__()
        if dim % qkv_block_size != 0:
            qkv_block_size=2
        # assert dim % qkv_block_size == 0
        self.dim = dim
        self.direction = direction
        self.expansion = expansion
        self.qkv_block_size = qkv_block_size
        self.proj_bias = proj_bias
        self.conv_bias = conv_bias
        self.kernel_size = kernel_size

        inner_dim = expansion * dim
        num_heads = inner_dim // qkv_block_size
        self.proj_up = nn.Linear(
            in_features=dim,
            out_features=2 * inner_dim,
            bias=proj_bias,
        )
        self.q_proj = LinearHeadwiseExpand(
            dim=inner_dim,
            num_heads=num_heads,
            bias=proj_bias,
        )
        self.k_proj = LinearHeadwiseExpand(
            dim=inner_dim,
            num_heads=num_heads,
            bias=proj_bias,
        )
        self.v_proj = LinearHeadwiseExpand(
            dim=inner_dim,
            num_heads=num_heads,
            bias=proj_bias,
        )

        self.conv1d = CausalConv1d(
            dim=inner_dim,
            kernel_size=kernel_size,
            bias=conv_bias,
        )
        self.mlstm_cell = MatrixLSTMCell(
            dim=inner_dim,
            num_heads=qkv_block_size,
        )
        self.learnable_skip = nn.Parameter(torch.ones(inner_dim))

        self.proj_down = nn.Linear(
            in_features=inner_dim,
            out_features=dim,
            bias=proj_bias,
        )
        self.reset_parameters()

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        B, S, _ = x.shape

        # alternate direction in successive layers
        if self.direction == SequenceTraversal.ROWWISE_FROM_TOP_LEFT:
            pass
        elif self.direction == SequenceTraversal.ROWWISE_FROM_BOT_RIGHT:
            x = x.flip(dims=[1])
        else:
            raise NotImplementedError

        # up-projection
        x_inner = self.proj_up(x)
        x_mlstm, z = torch.chunk(x_inner, chunks=2, dim=-1)

        # mlstm branch
        x_mlstm_conv = self.conv1d(x_mlstm)
        x_mlstm_conv_act = F.silu(x_mlstm_conv)
        q = self.q_proj(x_mlstm_conv_act)
        k = self.k_proj(x_mlstm_conv_act)
        v = self.v_proj(x_mlstm)
        h_tilde_state = self.mlstm_cell(q=q, k=k, v=v)
        h_tilde_state_skip = h_tilde_state + (self.learnable_skip * x_mlstm_conv_act)

        # output / z branch
        h_state = h_tilde_state_skip * F.silu(z)

        # down-projection
        x = self.proj_down(h_state)

        # reverse alternating flip
        if self.direction == SequenceTraversal.ROWWISE_FROM_TOP_LEFT:
            pass
        elif self.direction == SequenceTraversal.ROWWISE_FROM_BOT_RIGHT:
            x = x.flip(dims=[1])
        else:
            raise NotImplementedError

        return x

    def reset_parameters(self):
        # init inproj
        small_init_(self.proj_up.weight, dim=self.dim)
        if self.proj_up.bias is not None:
            nn.init.zeros_(self.proj_up.bias)
        # init outproj (original mLSTM uses num_blocks=1)
        wang_init_(self.proj_down.weight, dim=self.dim, num_blocks=1)
        if self.proj_down.bias is not None:
            nn.init.zeros_(self.proj_down.bias)

        nn.init.ones_(self.learnable_skip)

        def _init_qkv_proj(qkv_proj: LinearHeadwiseExpand):
            # use the embedding dim instead of the inner embedding dim
            small_init_(qkv_proj.weight, dim=self.dim)
            if qkv_proj.bias is not None:
                nn.init.zeros_(qkv_proj.bias)

        _init_qkv_proj(self.q_proj)
        _init_qkv_proj(self.k_proj)
        _init_qkv_proj(self.v_proj)

        self.mlstm_cell.reset_parameters()


class ViLBlock(nn.Module):
    def __init__(self, dim, direction, drop_path=0.0, norm_bias=False):
        super().__init__()
        self.dim = dim
        self.direction = direction
        self.drop_path = drop_path
        self.norm_bias = norm_bias

        self.drop_path = DropPath(drop_prob=drop_path)
        self.norm = LayerNorm(ndim=dim, weight=True, bias=norm_bias)
        self.layer = ViLLayer(dim=dim, direction=direction)

        self.reset_parameters()

    def _forward_path(self, x):
        x = self.norm(x)
        x = self.layer(x)
        return x

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        x = self.drop_path(x, self._forward_path)
        # print('In xlstm now')
        return x

    def reset_parameters(self):
        self.layer.reset_parameters()
        self.norm.reset_parameters()


class VisionLSTM(nn.Module):
    def __init__(
            self,
            dim=192,
            input_shape=(3, 224, 224),
            patch_size=16,
            depth=24,
            output_shape=(1000,),
            mode="classifier",
            pooling="bilateral_avg",
            drop_path_rate=0.0,
            stride=None,
            alternation="bidirectional",
            drop_path_decay=False,
            legacy_norm=False,
    ):
        super().__init__()
        self.input_shape = input_shape
        self.output_shape = output_shape
        ndim = len(self.input_shape) - 1
        self.patch_size = to_ntuple(patch_size, n=ndim)
        self.dim = dim
        self.depth = depth
        self.stride = stride
        self.mode = mode
        self.pooling = pooling
        self.alternation = alternation
        self.drop_path_rate = drop_path_rate
        self.drop_path_decay = drop_path_decay

        # initialize patch_embed
        self.patch_embed = VitPatchEmbed(
            dim=dim,
            stride=stride,
            num_channels=self.input_shape[0],
            resolution=self.input_shape[1:],
            patch_size=self.patch_size,
        )

        # pos embed
        self.pos_embed = VitPosEmbed2d(seqlens=self.patch_embed.seqlens, dim=dim)

        # calculate stochastic depth per block
        if drop_path_decay and drop_path_rate > 0.:
            dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)]
        else:
            dpr = [drop_path_rate] * depth

        # directions
        directions = []
        if alternation == "bidirectional":
            for i in range(depth):
                if i % 2 == 0:
                    directions.append(SequenceTraversal.ROWWISE_FROM_TOP_LEFT)
                else:
                    directions.append(SequenceTraversal.ROWWISE_FROM_BOT_RIGHT)
        else:
            raise NotImplementedError(f"invalid alternation '{alternation}'")

        # blocks
        self.blocks = nn.ModuleList(
            [
                ViLBlock(
                    dim=dim,
                    drop_path=dpr[i],
                    direction=directions[i],
                )
                for i in range(depth)
            ]
        )
        # LEGACY: only norm after pooling is needed, norm after blocks is not needed but was used for training
        if legacy_norm:
            self.legacy_norm = LayerNorm(dim, bias=False)
        else:
            self.legacy_norm = nn.Identity()
        self.norm = nn.LayerNorm(dim, eps=1e-6)

        # head
        if mode is None:
            # no head -> use as feature extractor
            assert self.output_shape is None
            assert self.pooling is None
            self.head = None
            self.output_shape = (self.patch_embed.num_patches, dim)
        elif mode == "classifier":
            # linear classification head
            assert self.output_shape is not None and len(self.output_shape) == 1, \
                f"define number of classes via output_shape=(num_classes,) (e.g. output_shape=(1000,) for ImageNet-1K"
            self.head = nn.Linear(dim, self.output_shape[0])
            # following MAE https://github.com/facebookresearch/mae/blob/main/main_finetune.py#L257
            nn.init.trunc_normal_(self.head.weight, std=2e-5)
            nn.init.zeros_(self.head.bias)
        else:
            raise NotImplementedError

    def load_state_dict(self, state_dict, strict=True):
        # interpolate pos_embed for different resolution (e.g. for fine-tuning on higher-resolution)
        old_pos_embed = state_dict["pos_embed.embed"]
        if old_pos_embed.shape != self.pos_embed.embed.shape:
            state_dict["pos_embed.embed"] = interpolate_sincos(embed=old_pos_embed, seqlens=self.pos_embed.seqlens)
        return super().load_state_dict(state_dict=state_dict, strict=strict)

    @torch.jit.ignore
    def no_weight_decay(self):
        return {"pos_embed.embed"}

    def forward(self, x):
        # embed patches
        x = self.patch_embed(x)
        # add pos_embed
        x = self.pos_embed(x)

        # flatten to 1d
        x = einops.rearrange(x, "b ... d -> b (...) d")

        # apply blocks
        for block in self.blocks:
            x = block(x)
        x = self.legacy_norm(x)

        # pool
        if self.pooling is None:
            x = self.norm(x)
        elif self.pooling == "bilateral_avg":
            # norm after pooling
            x = (x[:, 0] + x[:, -1]) / 2
            x = self.norm(x)
        else:
            raise NotImplementedError(f"pooling '{self.pooling}' is not implemented")

        # head
        if self.head is not None:
            x = self.head(x)

        return x