File size: 7,395 Bytes
226675b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
import torch
import torch.nn as nn
import torch.utils.model_zoo as model_zoo
import os

model_urls = {
    'resnet18': 'https://download.pytorch.org/models/resnet18-5c106cde.pth',
    'resnet34': 'https://download.pytorch.org/models/resnet34-333f7ec4.pth',
    'resnet50': 'https://download.pytorch.org/models/resnet50-19c8e357.pth',
    'resnet101': 'https://download.pytorch.org/models/resnet101-5d3b4d8f.pth',
    'resnet152': 'https://download.pytorch.org/models/resnet152-b121ed2d.pth',
    'resnet18stem': 'https://download.openmmlab.com/pretrain/third_party/resnet18_v1c-b5776b93.pth',
    'resnet50stem': 'https://download.openmmlab.com/pretrain/third_party/resnet50_v1c-2cccc1ad.pth',
    'resnet101stem': 'https://download.openmmlab.com/pretrain/third_party/resnet101_v1c-e67eebb6.pth',
}

def conv3x3(in_planes, outplanes, stride=1):
    # 带padding的3*3卷积
    return nn.Conv2d(in_planes, outplanes, kernel_size=3, stride=stride, padding=1, bias=False)

class BasicBlock(nn.Module):
    """
    Basic Block for Resnet
    """
    expansion = 1

    def __init__(self, inplanes, planes, stride=1, dilation=1, downsample=None):
        super(BasicBlock, self).__init__()
        self.conv1 = conv3x3(inplanes, planes, stride)
        self.bn1 = nn.BatchNorm2d(planes)
        self.relu = nn.ReLU(inplace=True)
        self.conv2 = conv3x3(planes, planes)
        self.bn2 = nn.BatchNorm2d(planes)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            residual = self.downsample(x)

        out += residual
        out = self.relu(out)

        return out

class Bottleneck(nn.Module):
    expansion = 4
    def __init__(self, in_planes, planes, stride=1, dilation=1, downsample=None):
        super(Bottleneck, self).__init__()
        self.conv1 = nn.Conv2d(in_planes, planes, 1, bias=False)
        self.bn1 = nn.BatchNorm2d(planes)
        self.conv2 = nn.Conv2d(planes, planes, 3, stride=stride, padding=dilation, 
                               dilation=dilation, bias=False)
        self.bn2 = nn.BatchNorm2d(planes)
        self.conv3 = nn.Conv2d(planes, planes*self.expansion, 1, bias=False)
        self.bn3 = nn.BatchNorm2d(planes*self.expansion)

        self.relu = nn.ReLU(inplace=False)
        self.relu_inplace = nn.ReLU(inplace=True)

        self.downsample = downsample
        self.dilation = dilation
        self.stride = stride

    def forward(self, x):
        residual = x

        out = self.relu(self.bn1(self.conv1(x)))
        out = self.relu(self.bn2(self.conv2(out)))
        out = self.bn3(self.conv3(out))

        if self.downsample is not None:
            residual = self.downsample(x)
        
        out = out + residual
        out = self.relu_inplace(out)

        return out

class Resnet(nn.Module):
    def __init__(self, block, layers, out_stride=8, use_stem=False, stem_channels=64, in_channels=3):
        self.inplanes = 64
        super(Resnet, self).__init__()
        outstride_to_strides_and_dilations = {
            8: ((1, 2, 1, 1), (1, 1, 2, 4)),
            16: ((1, 2, 2, 1), (1, 1, 1, 2)),
            32: ((1, 2, 2, 2), (1, 1, 1, 1)),
        }
        stride_list, dilation_list = outstride_to_strides_and_dilations[out_stride]

        self.use_stem = use_stem
        if use_stem:
            self.stem = nn.Sequential(
                conv3x3(in_channels, stem_channels//2, stride=2),
                nn.BatchNorm2d(stem_channels//2),
                nn.ReLU(inplace=False),

                conv3x3(stem_channels//2, stem_channels//2),
                nn.BatchNorm2d(stem_channels//2),
                nn.ReLU(inplace=False),

                conv3x3(stem_channels//2, stem_channels),
                nn.BatchNorm2d(stem_channels),
                nn.ReLU(inplace=False)
            )
        else:
            self.conv1 = nn.Conv2d(in_channels, stem_channels, kernel_size=7, stride=2, padding=3, bias=False)
            self.bn1 = nn.BatchNorm2d(stem_channels)
            self.relu = nn.ReLU(inplace=False)
        
        # self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1, ceil_mode=True)
        self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)

        self.layer1 = self._make_layer(block, 64, blocks=layers[0], stride=stride_list[0], dilation=dilation_list[0])
        self.layer2 = self._make_layer(block, 128, blocks=layers[1], stride=stride_list[1], dilation=dilation_list[1])
        self.layer3 = self._make_layer(block, 256, blocks=layers[2], stride=stride_list[2], dilation=dilation_list[2])
        self.layer4 = self._make_layer(block, 512, blocks=layers[3], stride=stride_list[3], dilation=dilation_list[3])

    def _make_layer(self, block, planes, blocks, stride=1, dilation=1, contract_dilation=True):
        downsample = None
        dilations = [dilation] * blocks

        if contract_dilation and dilation > 1: dilations[0] = dilation // 2
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                nn.Conv2d(self.inplanes, planes*block.expansion, kernel_size=1, stride=stride, bias=False),
                nn.BatchNorm2d(planes*block.expansion)
            )

        layers = []
        layers.append(block(self.inplanes, planes, stride, dilation=dilations[0], downsample=downsample))
        self.inplanes = planes * block.expansion

        for i in range(1, blocks):
            layers.append(block(self.inplanes, planes, dilation=dilations[i]))
        return nn.Sequential(*layers)
    
    def forward(self, x):
        if self.use_stem:
            x = self.stem(x)
        else:
            x = self.relu(self.bn1(self.conv1(x)))

        x = self.maxpool(x)

        x1 = self.layer1(x)
        x2 = self.layer2(x1)
        x3 = self.layer3(x2)
        x4 = self.layer4(x3)
        
        outs = [x1, x2, x3, x4]

        return tuple(outs)

def get_resnet18(pretrained=True):
    model = Resnet(BasicBlock, [2, 2, 2, 2], out_stride=32)
    if pretrained:
        checkpoint = model_zoo.load_url(model_urls['resnet18'])
        if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict']
        else: state_dict = checkpoint
        model.load_state_dict(state_dict, strict=False)
    return model

def get_resnet50_OS8(pretrained=True):
    model = Resnet(Bottleneck, [3, 4, 6, 3], out_stride=8, use_stem=True)
    if pretrained:
        checkpoint = model_zoo.load_url(model_urls['resnet50stem'])
        if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict']
        else: state_dict = checkpoint
        model.load_state_dict(state_dict, strict=False)
    return model

def get_resnet50_OS32(pretrained=True):
    model = Resnet(Bottleneck, [3, 4, 6, 3], out_stride=32, use_stem=False)
    if pretrained:
        checkpoint = model_zoo.load_url(model_urls['resnet50'])
        if 'state_dict' in checkpoint: state_dict = checkpoint['state_dict']
        else: state_dict = checkpoint
        model.load_state_dict(state_dict, strict=False)
    return model

if __name__ == "__main__":
    model = get_resnet50_OS32()
    x = torch.randn(4, 3, 256, 256)
    x = model(x)[-1]
    print(x.shape)