Upload checkpoint and readme file
Browse files- README.md +82 -0
- TinyCNN_model_acc_98.97.pth +3 -0
README.md
ADDED
|
@@ -0,0 +1,82 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# π§ TinyCNN for MNIST (94K params)
|
| 2 |
+
|
| 3 |
+
This repository contains a lightweight Convolutional Neural Network (CNN) designed for the MNIST handwritten digit classification task.
|
| 4 |
+
The model is optimized to be **small, fast, and easy to deploy**, suitable for both research and educational purposes.
|
| 5 |
+
|
| 6 |
+
---
|
| 7 |
+
|
| 8 |
+
## π Model Summary
|
| 9 |
+
|
| 10 |
+
| Attribute | Value |
|
| 11 |
+
|---------|--------|
|
| 12 |
+
| Model Name | **TinyCNN** |
|
| 13 |
+
| Dataset | MNIST (28Γ28 grayscale digits) |
|
| 14 |
+
| Total Parameters | ~94,410 |
|
| 15 |
+
| Architecture | Conv-BN-ReLU Γ3 β Global Avg Pool β FC |
|
| 16 |
+
| Input Shape | (1, 28, 28) |
|
| 17 |
+
| Output Classes | 10 |
|
| 18 |
+
| Framework | PyTorch |
|
| 19 |
+
|
| 20 |
+
---
|
| 21 |
+
|
| 22 |
+
## π Architecture Overview
|
| 23 |
+
|
| 24 |
+
**Input**: 1Γ28Γ28
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
**Conv Block 1:** Conv(1β32, 3Γ3) β BatchNorm β ReLU β MaxPool(2Γ2)
|
| 28 |
+
|
| 29 |
+
|
| 30 |
+
**Conv Block 2:** Conv(32β64, 3Γ3) β BatchNorm β ReLU β MaxPool(2Γ2)
|
| 31 |
+
|
| 32 |
+
**Conv Block 3:** Conv(64β128, 3Γ3) β BatchNorm β ReLU β MaxPool(2Γ2)
|
| 33 |
+
|
| 34 |
+
**Global Average Pooling**
|
| 35 |
+
|
| 36 |
+
**Fully Connected Layer** β 10 output classes
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
This architecture emphasizes parameter efficiency while maintaining strong representation capability.
|
| 40 |
+
|
| 41 |
+
---
|
| 42 |
+
|
| 43 |
+
## βοΈ Installation
|
| 44 |
+
|
| 45 |
+
```bash
|
| 46 |
+
pip install torch torchvision
|
| 47 |
+
```
|
| 48 |
+
## π Load Model From Hub
|
| 49 |
+
```
|
| 50 |
+
import torch
|
| 51 |
+
from model import TinyCNN # Ensure this file is included in your repo
|
| 52 |
+
|
| 53 |
+
model = TinyCNN(num_classes=10)
|
| 54 |
+
|
| 55 |
+
state_dict = torch.hub.load_state_dict_from_url(
|
| 56 |
+
"https://huggingface.co/<your-username>/<your-model-repo>/resolve/main/tinycnn_mnist.pth"
|
| 57 |
+
)
|
| 58 |
+
model.load_state_dict(state_dict)
|
| 59 |
+
model.eval()
|
| 60 |
+
```
|
| 61 |
+
|
| 62 |
+
## πΌ Example Inference
|
| 63 |
+
```
|
| 64 |
+
import torch
|
| 65 |
+
from torchvision import transforms
|
| 66 |
+
from PIL import Image
|
| 67 |
+
|
| 68 |
+
transform = transforms.Compose([
|
| 69 |
+
transforms.Grayscale(),
|
| 70 |
+
transforms.Resize((28, 28)),
|
| 71 |
+
transforms.ToTensor()
|
| 72 |
+
])
|
| 73 |
+
|
| 74 |
+
img = Image.open("digit.png")
|
| 75 |
+
x = transform(img).unsqueeze(0) # shape: (1, 1, 28, 28)
|
| 76 |
+
|
| 77 |
+
with torch.no_grad():
|
| 78 |
+
logits = model(x)
|
| 79 |
+
pred = logits.argmax(dim=1).item()
|
| 80 |
+
|
| 81 |
+
print("Predicted digit:", pred)
|
| 82 |
+
```
|
TinyCNN_model_acc_98.97.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:31c1f418a47ad67d224803858c0459d422c7c4252ba92598698242793fd90409
|
| 3 |
+
size 388607
|