deruyter92 commited on
Commit
46ff5ea
·
verified ·
1 Parent(s): 0cc2202

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +85 -3
README.md CHANGED
@@ -1,3 +1,85 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: apache-2.0
3
+ library_name: fmpose3d
4
+ pipeline_tag: image-to-3d
5
+ tags:
6
+ - pose-estimation
7
+ - 3d-pose-estimation
8
+ - monocular
9
+ - flow-matching
10
+ - human-pose
11
+ - animal-pose
12
+ - pytorch
13
+ datasets:
14
+ - human3.6m
15
+ - animal3d
16
+ language:
17
+ - en
18
+ ---
19
+
20
+ # FMPose3D: Monocular 3D Pose Estimation via Flow Matching
21
+
22
+ Official model weights for **[FMPose3D: monocular 3D pose estimation via flow matching](https://arxiv.org/abs/2602.05755)** by Ti Wang, Xiaohang Yu, and Mackenzie Weygandt Mathis.
23
+
24
+ | [Paper](https://arxiv.org/abs/2602.05755) | [Project Page](https://xiu-cs.github.io/FMPose3D/) | [GitHub](https://github.com/AdaptiveMotorControlLab/FMPose3D) | [PyPI](https://pypi.org/project/fmpose3d/) |
25
+
26
+ ## Overview
27
+
28
+ FMPose3D lifts 2D keypoints from a single image into 3D poses using **flow matching** — a generative technique based on ODE sampling. It generates multiple plausible 3D pose hypotheses in just a few steps, then aggregates them using a reprojection-based Bayesian module (RPEA) for accurate predictions, achieving state-of-the-art results on human and animal 3D pose benchmarks.
29
+
30
+ ## Available Checkpoints
31
+
32
+ | Filename | Skeleton | Joints | Training Data | Description |
33
+ |---|---|---|---|---|
34
+ | `fmpose3d_humans.pth` | H36M | 17 | Human3.6M | Human 3D pose estimation |
35
+ | `fmpose3d_animals.pth` | Animal3D | 26 | Animal3D | Quadruped animal 3D pose estimation |
36
+
37
+ ## Quick Start
38
+
39
+ ```bash
40
+ pip install fmpose3d
41
+ ```
42
+
43
+ Weights are downloaded automatically when using the Python API:
44
+
45
+ ```python
46
+ from fmpose3d import FMPose3DInference
47
+
48
+ # Human — weights auto-downloaded on first use
49
+ result = FMPose3DInference().predict("photo.jpg")
50
+
51
+ # Animal
52
+ result = FMPose3DInference.for_animals().predict("dog.jpg")
53
+ ```
54
+
55
+ For the full API reference, see the [GitHub repository](https://github.com/AdaptiveMotorControlLab/FMPose3D).
56
+
57
+ ## Manual Download
58
+
59
+ ```python
60
+ from huggingface_hub import hf_hub_download
61
+
62
+ path = hf_hub_download(repo_id="<org>/<repo>", filename="fmpose3d_humans.pth")
63
+ # or
64
+ path = hf_hub_download(repo_id="<org>/<repo>", filename="fmpose3d_animals.pth")
65
+
66
+ api = FMPose3DInference(model_weights_path=path)
67
+ ```
68
+
69
+ ## Citation
70
+
71
+ ```bibtex
72
+ @misc{wang2026fmpose3dmonocular3dpose,
73
+ title={FMPose3D: monocular 3D pose estimation via flow matching},
74
+ author={Ti Wang and Xiaohang Yu and Mackenzie Weygandt Mathis},
75
+ year={2026},
76
+ eprint={2602.05755},
77
+ archivePrefix={arXiv},
78
+ primaryClass={cs.CV},
79
+ url={https://arxiv.org/abs/2602.05755},
80
+ }
81
+ ```
82
+
83
+ ## License
84
+
85
+ Apache 2.0. We thank the Swiss National Science Foundation (SNSF Project # 320030-227871) and the Kavli Foundation for financial support.