File size: 21,190 Bytes
6f09d40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
#!/usr/bin/env python3
"""
FunctionGemma evaluation script (v2).

Uses a unified system prompt for evaluation.

Usage:
    python -m src.evaluate --model_path ./runs/<run>/final_model --benchmark_path ./data/benchmark_dataset.json
"""

import os
import re
import sys
import json
import argparse
import logging
from pathlib import Path
from typing import Dict, List, Optional, Tuple
from datetime import datetime
from concurrent.futures import ThreadPoolExecutor, as_completed
from threading import Lock

import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
from tqdm import tqdm

# Import config
PROJECT_ROOT = Path(__file__).resolve().parent.parent
if str(PROJECT_ROOT) not in sys.path:
    sys.path.insert(0, str(PROJECT_ROOT))

DEFAULT_BENCHMARK_PATH = PROJECT_ROOT / "data" / "benchmark_dataset.json"
DEFAULT_RESULTS_DIR = PROJECT_ROOT / "results"

from src.config import (  # noqa: E402
    get_system_prompt, get_system_prompt_short, TOOLS,
    SOLANA_TOKENS, get_token_address
)

# Logging
logging.basicConfig(
    level=logging.INFO,
    format='%(asctime)s - %(levelname)s - %(message)s'
)
logger = logging.getLogger(__name__)


def load_model(
    model_path: str,
    lora_path: Optional[str] = None,
    device: str = "auto",
    load_in_8bit: bool = False,
    load_in_4bit: bool = False,
):
    """Load model and tokenizer."""
    logger.info(f"Loading model: {model_path}")
    
    kwargs = {
        "device_map": device,
        "trust_remote_code": True,
    }
    
    if load_in_8bit:
        kwargs["load_in_8bit"] = True
    elif load_in_4bit:
        from transformers import BitsAndBytesConfig
        kwargs["quantization_config"] = BitsAndBytesConfig(
            load_in_4bit=True,
            bnb_4bit_compute_dtype=torch.bfloat16,
            bnb_4bit_use_double_quant=True,
            bnb_4bit_quant_type="nf4",
        )
    else:
        kwargs["torch_dtype"] = torch.bfloat16
    
    tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
    if tokenizer.pad_token is None:
        tokenizer.pad_token = tokenizer.eos_token
    
    model = AutoModelForCausalLM.from_pretrained(model_path, **kwargs)
    
    if lora_path:
        logger.info(f"Loading LoRA adapter: {lora_path}")
        model = PeftModel.from_pretrained(model, lora_path)
    
    model.eval()
    return model, tokenizer


def parse_functiongemma_output(response: str) -> Tuple[Optional[str], Optional[Dict]]:
    """
    Parse FunctionGemma formatted output.
    
    Format: <start_function_call>call:FUNC_NAME{key:<escape>value<escape>,...}<end_function_call>
    """
    # full match
    pattern = r'<start_function_call>call:(\w+)\{([^}]*)\}<end_function_call>'
    match = re.search(pattern, response)
    
    if not match:
        # partial match (truncated)
        pattern = r'<start_function_call>call:(\w+)\{([^}]*)\}'
        match = re.search(pattern, response)
    
    if not match:
        # match function name only
        pattern = r'<start_function_call>call:(\w+)'
        match = re.search(pattern, response)
        if match:
            return match.group(1), {}
        
        # fallback: look for function names
        for func in ["SEARCH_TOKEN", "EXECUTE_SWAP"]:
            if func in response:
                return func, {}
        
        return None, None
    
    func_name = match.group(1)
    params_str = match.group(2) if len(match.groups()) > 1 else ""
    
    # parse arguments
    args = parse_params_string(params_str)
    
    return func_name, args


def parse_params_string(params_str: str) -> Dict:
    """Parse parameter string."""
    args = {}
    if not params_str:
        return args
    
    # pattern: key:<escape>value<escape> or key:value
    param_pattern = r'(\w+):(?:<escape>([^<]*)<escape>|([^,}]+))'
    
    for match in re.finditer(param_pattern, params_str):
        key = match.group(1)
        value = match.group(2) if match.group(2) is not None else match.group(3)
        
        if value is None:
            continue
        
        value = value.strip()
        
        # handle percentage
        if value.endswith('%'):
            try:
                args[key] = float(value[:-1]) / 100
                continue
            except ValueError:
                pass
        
        # attempt numeric conversion
        try:
            if '.' in value:
                args[key] = float(value)
            else:
                args[key] = int(value)
        except ValueError:
            args[key] = value
    
    return args


def is_rejection_response(response: str) -> bool:
    """Check if the response is a rejection/clarification."""
    # no function call markers
    if '<start_function_call>' not in response:
        return True
    
    # check clarification/rejection keywords (keep Chinese variants for CN prompts)
    rejection_keywords = [
        "please specify", "could you", "what token", "which token",
        "请问", "请提供", "请告诉", "您能", "什么代币", "哪个代币",
        "sorry", "can't", "cannot", "unable", "抱歉", "无法",
        "more information", "more details", "更多信息",
    ]
    
    response_lower = response.lower()
    for keyword in rejection_keywords:
        if keyword.lower() in response_lower:
            return True
    
    return False


def format_messages_for_model(
    messages: List[Dict],
    tokenizer,
    tools: List[Dict] = None,
) -> str:
    """Format messages into the model chat template."""
    if hasattr(tokenizer, 'apply_chat_template'):
        try:
            return tokenizer.apply_chat_template(
                messages,
                tools=tools,
                tokenize=False,
                add_generation_prompt=True,
            )
        except Exception:
            pass
    
    # Manual formatting fallback
    formatted = ""
    for msg in messages:
        role = msg["role"]
        content = msg["content"]
        
        if role == "system":
            formatted += f"<start_of_turn>system\n{content}<end_of_turn>\n"
        elif role == "user":
            formatted += f"<start_of_turn>user\n{content}<end_of_turn>\n"
        elif role == "assistant":
            formatted += f"<start_of_turn>model\n{content}<end_of_turn>\n"
    
    formatted += "<start_of_turn>model\n"
    return formatted


def generate_response(
    model,
    tokenizer,
    prompt: str,
    system_prompt: str,
    max_new_tokens: int = 256,
) -> str:
    """Generate model response."""
    messages = [
        {"role": "system", "content": system_prompt},
        {"role": "user", "content": prompt},
    ]
    
    input_text = format_messages_for_model(messages, tokenizer, TOOLS)
    inputs = tokenizer(input_text, return_tensors="pt")
    inputs = {k: v.to(model.device) for k, v in inputs.items()}
    
    with torch.no_grad():
        outputs = model.generate(
            **inputs,
            max_new_tokens=max_new_tokens,
            temperature=0.1,
            do_sample=True,
            pad_token_id=tokenizer.pad_token_id,
            eos_token_id=tokenizer.eos_token_id,
        )
    
    response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=False)
    response = response.replace("<end_of_turn>", "").strip()
    
    return response


def compare_arguments(expected: Dict, actual: Dict) -> Tuple[float, List[str]]:
    """Compare expected vs actual arguments."""
    if not expected:
        return 1.0 if not actual else 0.0, []
    
    if not actual:
        return 0.0, ["No arguments extracted"]
    
    errors = []
    total_keys = set(expected.keys()) | set(actual.keys())
    
    if not total_keys:
        return 1.0, []
    
    matched = 0
    
    for key in expected.keys():
        exp_val = expected.get(key)
        act_val = actual.get(key)
        
        if exp_val is None:
            continue
        
        if act_val is None:
            errors.append(f"Missing key: {key}")
            continue
        
        # Compare values
        if str(exp_val) == str(act_val):
            matched += 1
        elif isinstance(exp_val, str) and isinstance(act_val, str):
            # Partial match (contract address prefix)
            if exp_val[:10] == act_val[:10]:
                matched += 0.5
                errors.append(f"Partial match for {key}")
            else:
                errors.append(f"Value mismatch for {key}: expected {exp_val}, got {act_val}")
        elif isinstance(exp_val, (int, float)) and isinstance(act_val, (int, float)):
            if abs(float(exp_val) - float(act_val)) < 0.01:
                matched += 1
            else:
                errors.append(f"Value mismatch for {key}: expected {exp_val}, got {act_val}")
        else:
            errors.append(f"Type mismatch for {key}")
    
    # Check extra keys
    for key in actual.keys():
        if key not in expected:
            errors.append(f"Extra key: {key}")
    
    score = matched / len([k for k in expected.keys() if expected.get(k) is not None]) if expected else 1.0
    return score, errors


def process_single_sample(
    sample: Dict,
    idx: int,
    model,
    tokenizer,
    system_prompt: str,
) -> Dict:
    """Process one sample and return evaluation result."""
    sample_id = sample.get("id", idx + 1)
    category = sample.get("category", "unknown")
    user_input = sample["input"]
    expected_func = sample["expected"]["function_name"]
    expected_args = sample["expected"].get("arguments", {})
    
    # Extract user message
    if isinstance(user_input, dict) and "messages" in user_input:
        prompt = ""
        for msg in user_input["messages"]:
            if msg.get("role") == "user":
                prompt = msg.get("content", "")
                break
    else:
        prompt = str(user_input)
    
    # Generate response
    response = generate_response(model, tokenizer, prompt, system_prompt)
    
    # Parse response
    actual_func, actual_args = parse_functiongemma_output(response)
    is_rejection = is_rejection_response(response)
    
    # Evaluate
    func_correct = False
    args_correct = False
    exact_match = False
    arg_score = 0.0
    error_msg = None
    rejection_correct = False
    
    if expected_func is None:
        # Expecting rejection
        func_correct = is_rejection or actual_func is None
        args_correct = func_correct
        exact_match = func_correct
        arg_score = 1.0 if func_correct else 0.0
        rejection_correct = func_correct
        
        if not func_correct:
            error_msg = f"Expected rejection, got {actual_func}"
    else:
        # Expecting a function call
        func_correct = actual_func == expected_func
        
        if func_correct:
            # Compare arguments
            arg_score, arg_errors = compare_arguments(expected_args, actual_args or {})
            args_correct = arg_score >= 0.99
            exact_match = args_correct
            
            if not args_correct:
                error_msg = "; ".join(arg_errors)
        else:
            error_msg = f"Expected {expected_func}, got {actual_func}"
    
    # Return result
    result = {
        "sample_id": sample_id,
        "category": category,
        "expected_func": expected_func,
        "actual_func": actual_func,
        "func_correct": func_correct,
        "args_correct": args_correct,
        "exact_match": exact_match,
        "rejection_correct": rejection_correct,
        "arg_score": arg_score,
        "error_msg": error_msg,
        "user_input": user_input,
        "expected_args": expected_args,
        "actual_args": actual_args,
        "response": response,
    }
    
    return result


def evaluate_benchmark(
    model,
    tokenizer,
    benchmark: List[Dict],
    chain: str = "solana",
    verbose: bool = False,
    num_workers: int = 1,
) -> Dict:
    """Evaluate the benchmark (supports concurrency)."""
    system_prompt = get_system_prompt_short(chain)
    
    results = {
        "total": len(benchmark),
        "function_correct": 0,
        "arguments_correct": 0,
        "exact_match": 0,
        "rejection_correct": 0,
        "total_arg_score": 0.0,
        "by_category": {},
        "by_function": {},
        "errors": [],
    }
    
    # Protect result updates with a lock
    results_lock = Lock()
    
    # Concurrent processing
    if num_workers > 1:
        logger.info(f"Evaluating with {num_workers} worker threads")
        
        with ThreadPoolExecutor(max_workers=num_workers) as executor:
            # Submit tasks
            futures = {
                executor.submit(
                    process_single_sample,
                    sample, i, model, tokenizer, system_prompt
                ): i for i, sample in enumerate(benchmark)
            }
            
            # Progress bar
            with tqdm(total=len(benchmark), desc="Evaluation") as pbar:
                for future in as_completed(futures):
                    result = future.result()
                    
                    # Update results (locked)
                    with results_lock:
                        _update_results(results, result, verbose)
                    
                    pbar.update(1)
    else:
        # Serial path
        logger.info("Evaluating with a single thread")
        for i, sample in enumerate(tqdm(benchmark, desc="Evaluation")):
            result = process_single_sample(sample, i, model, tokenizer, system_prompt)
            _update_results(results, result, verbose)
    
    return results


def _update_results(results: Dict, result: Dict, verbose: bool):
    """Update aggregated evaluation results."""
    sample_id = result["sample_id"]
    category = result["category"]
    expected_func = result["expected_func"]
    actual_func = result["actual_func"]
    func_correct = result["func_correct"]
    args_correct = result["args_correct"]
    exact_match = result["exact_match"]
    rejection_correct = result["rejection_correct"]
    arg_score = result["arg_score"]
    error_msg = result["error_msg"]
    
    # Overall stats
    if func_correct:
        results["function_correct"] += 1
    if args_correct:
        results["arguments_correct"] += 1
    if exact_match:
        results["exact_match"] += 1
    if rejection_correct:
        results["rejection_correct"] += 1
    results["total_arg_score"] += arg_score
    
    # By category
    if category not in results["by_category"]:
        results["by_category"][category] = {
            "total": 0, "func_correct": 0, "exact_match": 0, "arg_score": 0.0
        }
    results["by_category"][category]["total"] += 1
    if func_correct:
        results["by_category"][category]["func_correct"] += 1
    if exact_match:
        results["by_category"][category]["exact_match"] += 1
    results["by_category"][category]["arg_score"] += arg_score
    
    # By function
    func_key = expected_func or "None"
    if func_key not in results["by_function"]:
        results["by_function"][func_key] = {
            "total": 0, "func_correct": 0, "exact_match": 0, "arg_score": 0.0
        }
    results["by_function"][func_key]["total"] += 1
    if func_correct:
        results["by_function"][func_key]["func_correct"] += 1
    if exact_match:
        results["by_function"][func_key]["exact_match"] += 1
    results["by_function"][func_key]["arg_score"] += arg_score
    
    # Record errors
    if error_msg and len(results["errors"]) < 10:
        results["errors"].append({
            "id": sample_id,
            "category": category,
            "input": result["user_input"],
            "expected_func": expected_func,
            "actual_func": actual_func,
            "expected_args": result["expected_args"],
            "actual_args": result["actual_args"],
            "error": error_msg,
            "response": result["response"][:200],
        })
    
    if verbose:
        status = "✓" if exact_match else "✗"
        # Extract user message preview for logs
        user_input = result["user_input"]
        if isinstance(user_input, dict):
            user_msg = ""
            if "messages" in user_input:
                for msg in user_input["messages"]:
                    if msg.get("role") == "user":
                        user_msg = msg.get("content", "")
                        break
            input_preview = user_msg[:50] if user_msg else str(user_input)[:50]
        else:
            input_preview = str(user_input)[:50]
        logger.info(f"[{sample_id}] {status} {category}: {input_preview}...")


def print_report(results: Dict):
    """Print evaluation report."""
    total = results["total"]
    
    print("\n" + "=" * 70)
    print("FunctionGemma Evaluation Report")
    print("=" * 70)
    print(f"\nTotal samples: {total}")
    
    print("\n" + "-" * 70)
    print("Overall metrics")
    print("-" * 70)
    
    func_acc = results["function_correct"] / total * 100 if total > 0 else 0
    arg_acc = results["arguments_correct"] / total * 100 if total > 0 else 0
    exact_acc = results["exact_match"] / total * 100 if total > 0 else 0
    avg_arg_score = results["total_arg_score"] / total * 100 if total > 0 else 0
    
    # Rejection accuracy
    rejection_samples = sum(1 for f in results["by_function"].values() if "None" in str(f))
    rejection_total = results["by_function"].get("None", {}).get("total", 0)
    rejection_acc = results["rejection_correct"] / rejection_total * 100 if rejection_total > 0 else 0
    
    print(f"Function selection accuracy: {func_acc:.2f}%")
    print(f"Argument accuracy:           {arg_acc:.2f}%")
    print(f"Exact match accuracy:        {exact_acc:.2f}%")
    print(f"Average argument score:      {avg_arg_score:.2f}%")
    print(f"Rejection accuracy:          {rejection_acc:.2f}%")
    
    print("\n" + "-" * 70)
    print("By function")
    print("-" * 70)
    
    for func, stats in sorted(results["by_function"].items()):
        func_total = stats["total"]
        func_correct = stats["func_correct"] / func_total * 100 if func_total > 0 else 0
        func_arg_score = stats["arg_score"] / func_total * 100 if func_total > 0 else 0
        func_exact = stats["exact_match"] / func_total * 100 if func_total > 0 else 0
        
        print(f"{func:15} | samples: {func_total:3} | func acc: {func_correct:6.2f}% | "
              f"arg score: {func_arg_score:6.2f}% | exact: {func_exact:6.2f}%")
    
    if results["errors"]:
        print("\n" + "-" * 70)
        print("Error samples")
        print("-" * 70)
        
        for err in results["errors"][:5]:
            print(f"\nID: {err['id']} | category: {err['category']}")
            print(f"Input: {err['input']}")
            print(f"Expected: {err['expected_func']} | Actual: {err['actual_func']}")
            print(f"Error: {err['error']}")
    
    print("\n" + "=" * 70)


def main():
    parser = argparse.ArgumentParser(description="FunctionGemma evaluation (v2)")
    parser.add_argument("--model_path", type=str, required=True, help="Model path")
    parser.add_argument("--lora_path", type=str, default=None, help="LoRA adapter path")
    parser.add_argument("--benchmark_path", type=str, default=str(DEFAULT_BENCHMARK_PATH), help="Benchmark dataset path")
    parser.add_argument("--output_path", type=str, default=None, help="Output path (defaults to results/ with timestamp)")
    parser.add_argument("--chain", type=str, default="solana", help="Chain name")
    parser.add_argument("--load_in_8bit", action="store_true", help="Enable 8-bit quantization")
    parser.add_argument("--load_in_4bit", action="store_true", help="Enable 4-bit quantization")
    parser.add_argument("--verbose", action="store_true", help="Verbose logging")
    parser.add_argument("--num_workers", type=int, default=4, help="Number of worker threads (default 4)")
    args = parser.parse_args()
    
    # Load model
    model, tokenizer = load_model(
        args.model_path,
        lora_path=args.lora_path,
        load_in_8bit=args.load_in_8bit,
        load_in_4bit=args.load_in_4bit,
    )
    
    # Load benchmark
    benchmark_path = Path(args.benchmark_path)
    logger.info(f"Loading benchmark: {benchmark_path}")
    with open(benchmark_path, 'r', encoding='utf-8') as f:
        benchmark = json.load(f)
    
    logger.info(f"Benchmark samples: {len(benchmark)}")
    
    # Evaluate
    logger.info("Starting evaluation...")
    results = evaluate_benchmark(
        model, tokenizer, benchmark,
        chain=args.chain,
        verbose=args.verbose,
        num_workers=args.num_workers,
    )
    
    # Print report
    print_report(results)
    
    # Save results
    output_path = Path(args.output_path) if args.output_path else DEFAULT_RESULTS_DIR / f"evaluation_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json"
    output_path.parent.mkdir(parents=True, exist_ok=True)
    
    with open(output_path, 'w', encoding='utf-8') as f:
        json.dump(results, f, ensure_ascii=False, indent=2)
    logger.info(f"Evaluation saved to: {output_path}")


if __name__ == "__main__":
    main()