File size: 2,583 Bytes
f0e5630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d3d96d3
f0e5630
 
 
d3d96d3
 
f0e5630
 
 
d3d96d3
f0e5630
d3d96d3
f0e5630
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
---
license: apache-2.0
tags:
- pruned
- python
- optimized
- wanda
- activation-pruning
base_model: Qwen/Qwen2.5-3B-Instruct
pipeline_tag: text-generation
---

# Qwen2.5-3B-Instruct-python-aggressive

> 🎯 **PYTHON-optimized** | πŸ“¦ **Aggressive** pruning | ⚑ **20% weights pruned**

This model is a **aggressively pruned** version of [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct), specialized for **PYTHON** tasks using activation-aware weight pruning (Wanda-style).

## ✨ Key Features

- **Specialization**: Optimized for Python tasks
- **Pruning Method**: Wanda-style (|W| Γ— |activation|) importance scoring
- **Size Reduction**: 20% weights pruned
- **Use Case**: Maximum compression for edge deployment

## πŸ“Š Performance Comparison

| Category | Original | Pruned | Change |
|----------|----------|--------|--------|
| **Python** | 100.0% | 40.0% ⭐ | ↓ 60.0% |
| Html | 6.7% | 0.0% | ↓ 6.7% |
| Trivia | 66.7% | 60.0% | ↓ 6.7% |
| Math | 60.0% | 66.7% | ↑ 6.7% |
| Reasoning | 100.0% | 86.7% | ↓ 13.3% |
| Medical | 86.7% | 80.0% | ↓ 6.7% |
| Linux | 100.0% | 100.0% | β†’ |
| Writing | 73.3% | 73.3% | β†’ |

**Average**: 74.2% β†’ 63.3% (-10.8%)

**Python Retention**: 40.0% of original performance

![Comparison Graph](comparison_graph.png)

## πŸš€ Quick Start

```python
from transformers import AutoModelForCausalLM, AutoTokenizer

model = AutoModelForCausalLM.from_pretrained("CompactAI/Qwen2.5-3B-Instruct-python-aggressive")
tokenizer = AutoTokenizer.from_pretrained("CompactAI/Qwen2.5-3B-Instruct-python-aggressive")

# Example usage
inputs = tokenizer("Your prompt here", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=100)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
```

## πŸ“‹ Technical Details

| Property | Value |
|----------|-------|
| Base Model | [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct) |
| Specialization | Python |
| Prune Mode | Aggressive |
| Pruning Method | Activation-based weight pruning (Wanda) |
| Weight Reduction | 20% weights pruned |

## πŸ”— Related Models

This model is part of the **Qwen2.5-3B-Instruct** pruned model collection. Variants:
- **Safe** - Conservative pruning (~10-20%), high accuracy retention
- **Aggressive** - Maximum compression (~40-50%), best for edge deployment

## πŸ“œ License

This model inherits the license from the base model [Qwen/Qwen2.5-3B-Instruct](https://huggingface.co/Qwen/Qwen2.5-3B-Instruct).

---
*Generated by ZANNPS [Zeto Automatic Neural Network Pruning System]*